

PLANS AND DOCUMENTS referred to in the PDA DEVELOPMENT APPROVAL

Approval no: DEV2024/1540 Date: 21 May 2025

CCCCC

CIVIL ENGINEERING REPORT: ENGINEERING SERVICES REPORT

Lot 104 Flagstone Estate

4499-4651 Mount Lindesay Highway North Maclean

PREPARED FOR CH Hydrangea Pty Ltd

Ref: BN241827 Rev: B Date: 20.09.2024

Disclaimer

This report has been prepared on behalf of CH Hydrangea Pty Ltd and for the exclusive use of and is subject to and issued in accordance with the agreement between CH Hydrangea Pty Ltd and Northrop Consulting Engineers. Northrop Consulting Engineers accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party. Copying this report without the permission of CH Hydrangea Pty Ltd and Northrop Consulting Engineers is not permitted.

Document Control

lydrangea Pty Ltd 04 Flagstone Estate
04 Flagstone Estate
-4651 Mount Lindesay Highway, North Maclean QLD 4820
1827
1827_ESR001_A_Lot 104 Flagstone Estate
9.2024
olas Gill (RPEQ 28597)
1

Approver Signature:

Revisions

Rev	Date	Description	Prepared	Reviewed	Approved
А	17.09.2024	DRAFT issue	J.Li	A. De Andrade	S. Killoran (RPEQ 25874)
В	20.09.2024	Issued for Approval	J.Li	A. De Andrade	N. Gill (RPEQ 28597)
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-

Table of Contents

Gloss	Glossary 5				
Execu	Executive Summary				
1.	Introduction	7			
1.1.	Related Reports and Documents	7			
2.	Site Context and Existing Characteristics	8			
3.	Proposed Development / Lot Configuration	9			
4.	Earthworks1	0			
4.1. 4.2.	Bulk Earthworks				
5.	Roads and Access1	1			
6.	Flood Management1	2			
7.	Stormwater Drainage1	3			
7.1.	Existing Stormwater Drainage Scheme				
7.2. 7.3.	Proposed Stormwater Management Objectives Proposed Stormwater Drainage Infrastructure				
8.	Water Supply1				
8.1.	Existing Water Supply Infrastructure				
8.2.	Proposed Water Supply Infrastructure				
8.2	2.1. Projected Development Loads 1	15			
8.2	2.2. Internal Water Network 1	15			
8.2	2.3. Fire System	15			
9.	Sewerage Reticulation1	6			
9.1. 9.2. 9.2	Existing Sewer Reticulation	16			
10.	Electrical Supply1	7			
11.	Gas Supply1	8			
12.	Telecommunications1	9			
13.	Conclusion	20			

Figures

Figure 2-1 - Site Locality (Wolter Consulting Group Drawing No. 22-0007P/01-02)	8
Figure 3-1 - Proposed Development (Watson Young)	9
Figure 4-1 - Acid Sulfate Soils Overlay (Logan Interactive Map, 2024)	10
Figure 5-1 - Proposed Site Access	11

Tables

Table 1-1 - Property Details	7
Table 7-1 - Water Quality Objectives	13
Table 8-1 - Development Loading for Water Supply	15
Table 9-1 - Development Loading for Sewerage by Locality	16

Appendices

Appendix A – Civil Engineering Plans	. 21
Appendix B – Arcadis IFC Documentation (Existing Estate Infrastructure)	
Appendix C – Architectural Drawings	. 23
Appendix D – Arcadis Water Network Analysis	. 24
Appendix E – Arcadis Sewer Network Analysis	

Glossary

Term	Definition
ADP	Area Development Plan
ADWF	Average Dry Weather Flow
ARI	Average Recurrence Interval
EDQ	Economic Development Queensland
EP	Equivalent Persons
ESCP	Erosions and Sediment Control Plan
ESR	Engineering Services Report
ET	Equivalent Tenants
FIA	Flood Impact Assessment
LCC	Logan City Council
PDWF	Peak Dry Weather Flow
PWWF	Peak Wet Weather Flow
QUDM	Queensland Urban Drainage Manual
ROL	Reconfiguration of Lot
SBSMP	Site Based Stormwater Management Plan
SQID	Stormwater Quality Improvement Device
UD	Ultimate Development

Executive Summary

This Engineering Services Report (ESR) has been prepared on behalf of CH Hydrangea Pty Ltd (Applicant) in support of a development application over land at 4499-4651 Mount Lindesay Highway, North Maclean QLD 4280 and described as Lot 39 on SP258739 (site). This PDA Development Application seeks approval for the following aspects of development:

- Development Permit for a Material Change of Use for Warehouse (Distribution Centre).
- In support of Reconfiguration of Lot 1 into 5, plus balance lot and access easements

The material change of use aspect of the proposed development seeks approval for a warehouse (distribution centre) to enable the construction of one of the first buildings within the Flagstone Logistics Estate. The tenant at this stage is confidential, and therefore development approval is sought for a confidential tenant. The proposed warehouse will be located on Proposed Lot 104 and is intended to service as a distribution centre for the tenant, for the receival, warehousing, storing and distribution of products.

This ESR provides advice on engineering services strategy for the proposed development's engineering planning issues associated with the application. This report demonstrates that the proposed development can connect to local stormwater, potable water, sewerage reticulation, electricity, telecommunications and transport infrastructure. The servicing strategy for the development is summarised below.

It is noted that the infrastructure referred to as existing in this report, is the estate infrastructure that is currently under construction. It is anticipated that this construction will be completed by the time proposed Lot 104 development is commenced.

Site Access – one (1) heavy vehicle and one (1) light vehicle crossovers are proposed for the development which will provide access from the external estate road.

Stormwater Management – The proposed development will introduce a new internal pit and pipe system and connect into the existing lawful point of discharge. Refer to the SBSMP for the overarching development that has been prepared by Northrop (BN241827_SBSMP001_A_Lot 104 Flagstone Estate), and the overarching precinct SBSMP prepared by Arcadis (EAG001-30109334-AAR Revision 12).

 Water Supply – The development's internal water reticulation network will have a single connection point to an existing DN150mm reticulation water main located within the Industrial Road fronting the site (Enterprise Drive). The proposed development loads are less than the projected loads for the site as outlined in Arcadis Water Network Assessment EAG005-30109334-AAR-WNA.

Sewer Reticulation – The development's internal sewer reticulation network will connect to the existing DN160 property connection from manhole 2/HC11 located in the road verge towards the northern boundary of the site. The proposed development loads are less than the projected loads for the site as outlined in Arcadis Sewer Network Assessment EAG006-30109334-AAR-SNA

- **Electrical Supply** Connection to existing electrical infrastructure within the Council Industrial Road fronting the site (Enterprise Drive).
- Gas Supply No Gas infrastructure was identified in the vicinity of the site. Should gas services be required for the development, connection and extension requirements shall be undertaken by a specialist consultant and will form part of the future building works applications to both APA and EDQ.
 Telecommunications Connection to existing telecommunications infrastructure surrounding the site will be made via underground cables to the conduit network installed as part of the estate works in the Industrial Road fronting the site (Enterprise Drive).

1. Introduction

This Engineering Services Report (ESR) has been prepared on behalf of CH Hydrangea Pty Ltd (Applicant) in support of a development application over land at 4499-4651 Mount Lindesay Highway, North Maclean QLD 4280 and described as Lot 39 on SP258739 (site). This PDA Development Application seeks approval for the following aspects of development:

- Development Permit for a Material Change of Use for Warehouse (Distribution Centre).
- In support of Reconfiguration of Lot 1 into 5, plus balance lot and access easements

The material change of use aspect of the proposed development seeks approval for a warehouse (distribution centre) to enable the construction of one of the first buildings within the Flagstone Logistics Estate. The tenant at this stage is confidential, and therefore development approval is sought for a confidential tenant. The proposed warehouse will be located on Proposed Lot 104 and is intended to service as a distribution centre for the tenant, for the receival, warehousing, storing and distribution of products

The purpose of this ESR is to provide advice on the engineering servicing strategy for the proposed development regarding earthworks, roadworks, stormwater management (quality, quantity and flooding), sewerage, water supply, electricity, communications and gas. The required infrastructure will be subject to the conditions attached to the Development Approval to be provided by Economic Development Queensland (EDQ).

Table 1-1 - Property Details

Category	Description
Site Address	4499 – 4651 Mount Lindesay Highway North Maclean
Lot Title	Proposed Lot 104 Flagstone Estate
Total Site Area	7869m ²
Proposed Land Use	Warehouse

1.1. Related Reports and Documents

This report is to be read in conjunction with the following supporting and reference documents:

- Site Based Stormwater Management Plan Report by Northrop. Report No: BN241827_SBSMP001_A_Lot 104 Flagstone Estate
- Arcadis SBSMP EAG001-30109334-AAR Revision 12 Arcadis SNA EAG006-30109334-AAR-SNA Revision 04 Arcadis WNA EAG005-30109334-AAR-WNA Revision 03
- Civil Design Drawings by Northrop. Drawings No DA001 to DA382 (Revision 2)
- PDA Development Approval DEV2018/961/12

2. Site Context and Existing Characteristics

The subject site was created as part of the greater Flagstone Priority Development Area (PDA) and as described as Lot 39 in RoL Approval DEV2018/961/12. The site is currently cleared and undeveloped, comprising primarily of exposed soils. The site generally falls north-east towards the existing road at approximately 0.5% grade. The subject site is located within stage 1 of the development and is located within the Industrial and Warehouse Precinct of the endorsed greater flagstone context plan.

The site is currently bound by:

- Enterprise Drive to the north
- Industrial development to the east
- Powerlink Easement to the south
- Logistics Way to the west

A site locality is shown Figure 2-1.

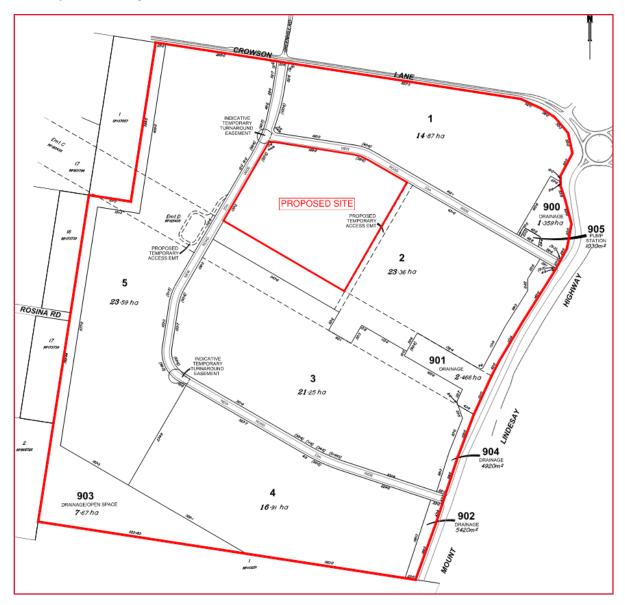


Figure 2-1 - Site Locality (Wolter Consulting Group Drawing No. 22-0007P/01-02)

3. Proposed Development / Lot Configuration

The proposed development involves the construction of a warehouse (distribution centre) on Proposed Lot 104 in support of the Reconfiguration of Lot -1 into 5 Lots, plus balance lot and access easements. The proposed architectural layout of the development prepared by Watson Young is shown below in Figure 3-1. Architectural drawings are included in Appendix C.

The material change of use of the proposed development seeks approval for a warehouse (distribution centre) to enable to the construction of one of the first buildings within the Flagstone Logistics Estate.

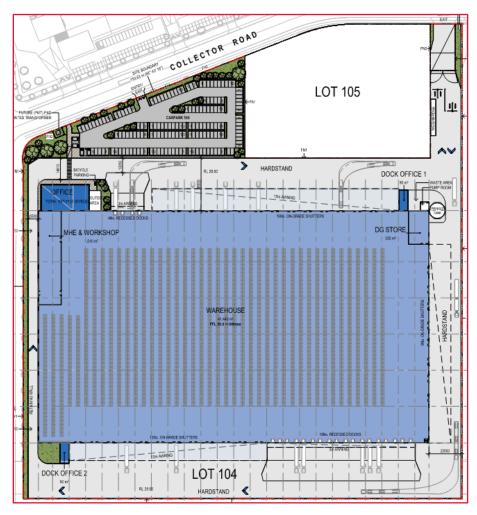


Figure 3-1 - Proposed Development (Watson Young)

4. Earthworks

4.1. Bulk Earthworks

Bulk earthworks operations for the greater development have been undertaken as part of PDA Development Approval DEV2018/961/12. The proposed lot 104 development will require additional bulk earthworks operations to achieve the desired surface levels to accommodate the development.

4.2. Acid Sulfate Soil Assessment

Figure 4-1 below illustrates the Acid Sulfate Soil (A.S.S) overlay accessed from Logan Interactive Map. Figure 4-1 indicates that the site is not located within an area subject to risks associated with A.S.S. if acid sulfate soils are encountered on site, management of soils is to be in accordance with EDQ's requirements.

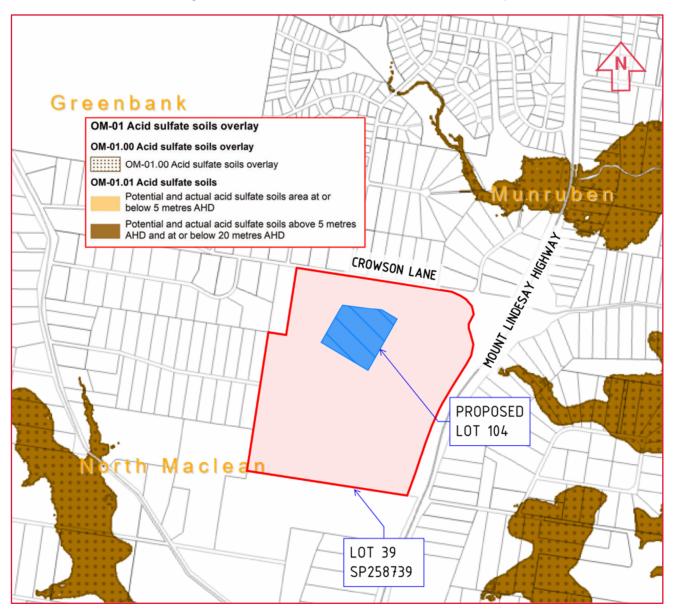


Figure 4-1 - Acid Sulfate Soils Overlay (Logan Interactive Map, 2024)

5. Roads and Access

Two (2) vehicular access points are proposed for the development. The development proposes to construct new vehicle crossovers and associated access ramp from the collector road. Site access to the carpark for light vehicles is proposed from Enterprise Drive. Site access for heavy commercial vehicles is proposed at crossover adjacent to lot 105.

Internal hardstand areas will be designed in accordance with Logan City Council Land Development Guidelines and can cater for the design vehicle access to the loading docks.

COLLECTOR ROAD SITE ENTRY/EXIT LOT 105 SITE 11 ENTRY/EXIT HARDSTAND RI 28.5 DOCK OFFICE 1 15m A DG STORE RL 28.50 MHE & WORKSHOP SITE B(20.03 m (WAREHOUSE **ARDSTAND** 41,440 ROAD ESTATE RL 31.00 RL 28.50 DOCK OFFICE 2 LOT 104 < RL 28.0 HARDSTAND < EN SITE BOUNDARY 301.45 m (270° 00' 00")

The access points to the site are illustrated below in Figure 5-1.

Figure 5-1 - Proposed Site Access

6. Flood Management

The estate Site Based Stormwater Management Plan (Quantity) by Arcadis (EAG001-30109334-AAR Revision 12) discusses the flood risk associated with the proposed estate for design storms up to and included the 1% AEP. The report demonstrates that the proposed Lot 104 development has immunity for all design storms.

Further to their SBSMP, Arcadis have prepared a technical memorandum (EAG001-30109334-AAR-02) which discusses the flood risk associated with the proposed estates for design storms exceeding the 1% AEP 2100, up to and including the 0.2% 2100 AEP. This memorandum was prepared in response to Logan City Council Planning Scheme 2015 Section 8.2.5 – Flood Overlay Code. The memorandum demonstrates that the proposed Lot 104 development has immunity for all design storms.

Refer to Northrop SBSMP BN241927_SBSMP001_A_Lot 104 Flagstone Estate for further information.

7. Stormwater Drainage

A SBSMP (BN241927_SBSMP001_A_Lot 104 Flagstone Estate) has been prepared by Northrop Consulting Engineers. The report addresses the stormwater quality and quantity management scheme for the proposed development and should be referred to for full details of the stormwater management strategy. A summary of the proposed stormwater strategy is provided below.

7.1. Existing Stormwater Drainage Scheme

The subject site generally falls north-east towards the existing road at 0.5% The site has been levelled as part of earthworks operations and is currently cleared and undeveloped, comprising primarily of stabilised soils.

The following existing stormwater infrastructure has been identified in the vicinity of the site. The information has been sourced from the Arcadis Detailed Design documentation and the SBSMP EAG001-30109334-AAR Revision 12.

• Existing stormwater infrastructure within the Enterprise Drive road reserve to the North of the subject site.

7.2. Proposed Stormwater Management Objectives

The stormwater management objectives that apply to the site have been defined in accordance with QUDM and The Logan Planning Scheme 2015 Version 5.1. The stormwater objectives are:

- Development should not result in water being diverted onto land that is not normally subject to overland flow
- Define a lawful point of discharge that will not cause an actionable nuisance in accordance with QUDM
- Ensure that the development does not create adverse flood impacts to upstream or adjacent properties
- No increase in post development flows for all rainfall events up to and including 100-year event
- Stormwater quality to achieve the minimum design requirements of the State Planning Policy (2017) and achieve water quality objectives in accordance with Environmental Protection (Water) Policy (2009), as follows in Table 7-1 below.

Table 7-1 - Water Quality Objectives

Pollutant	Percent Reduction
Gross Pollutants (>5mm), GP	90%
Total Suspended Solids, TSS	80%
Total Phosphorous, TP	60%
Total Nitrogen, TN	45%

The achievement of these objectives is summarised in the following section of this report. Reference should also be made to the SBSMP prepared for the development.

7.3. Proposed Stormwater Drainage Infrastructure

The stormwater quantity objective was to demonstrate non-worsening in peak discharges from the subject site flows outlined in the Arcadis SBSMP EAG001-30109334-AAR Revision 12 and Approved as part of the EDQ approval DEV2018/961/13.

To achieve non-worsening, the proposed lot 104 development requires a total detention volume of 4703m³ which has been achieved via an underground detention tank, located in the hardstand to the northeastern corner of the site. Stormwater runoff from the proposed roof and hardstand areas shall be conveyed to the tank prior to discharge.

Stormwater quality infrastructure has been included in the design to achieve the water quality objectives for Southeast Queensland specified in the State Planning Policy 2017, namely, the removal of gross pollutants, suspended solids, nitrogen and phosphorus. The proposed treatment train was modelling using MUSIC modelling software and includes the following SQID's:

- 42x Ocean Protect OceanGuard 200-micron filter baskets to all stormwater inlet pits
- 120x Ocean Protect StormFilter 690 Psorb Cartridges

Refer to Northrop Consulting Engineers SBSMP (BN241927_SBSMP001_A_Lot 104 Flagstone Estate) for more details.

8. Water Supply

8.1. Existing Water Supply Infrastructure

The following water mains have been identified near the site based on the Arcadis IFC Documentation (site survey) refer Appendix B:

• DN150mm PVC-M water reticulation main located on Enterprise Drive, along the northern boundary

8.2. Proposed Water Supply Infrastructure

Proposed water supply infrastructure for the industrial estate Lot 104 is to be constructed within the Enterprise Drive road corridor. A single metered connection for the proposed development will be required. It is expected the new meter will connect to the existing end of line arrangements located at the site boundary.

The proposed connection locations are detailed on the engineering drawings included in Appendix A.

8.2.1. Projected Development Loads

The projected loads have been assessed in accordance with SEQ Water Supply and Sewerage Design and Construction Code (SEQ WS&S D&C Code), and the Logan Water Technical Memorandum DD8001 North Maclean conversion rates. The calculated loading is presented in Table 8-1 Below.

Table 8-1 - Development Loading for Water Supply

Locality	IDM Development Type	GFA (Ha)	Development Density (EP/Ha)	EP
LCC	Lot 104 Warehouse Distribution	4.4	55.90	246
LCC	Lot 105 Warehouse Distribution	0.84 (75% of site area allowance)	55.90	47
			TOTAL	293

Table 8-1 above demonstrates the development loading is calculated per net area for industrial developments. As part of the Water Network Analysis EAG005-30109334-AAR-WNA-03 Arcadis has considered the warehouse GFA for the site area as 5.5Ha (70% of site area) or 307 EP. Given this, it is expected that the existing water network adequately caters to the proposed development Lot 104 loads and the allowance for Lot 105.

8.2.2. Internal Water Network

As part of the building works, internal water reticulation service will be provided throughout the site. This will require a full water network design to be prepared by a qualified hydraulic engineer, designed to service all internal firefighting flows and services demands.

8.2.3. Fire System

In accordance with the SEQ WS&S D&C Code, the site is permitted to draw the following fire flows.

Commercial/ Industrial – 30L/sec for 4 hours

The water connection and internal water reticulation network for the development will be designed as part of future Operational Works applications for the site.

9. Sewerage Reticulation

9.1. Existing Sewer Reticulation

The following water mains have been identified near the site based on the Arcadis IFC Documentation (site survey) refer Appendix B:

• DN150mm PVC-U SN8 Sewer main along Enterprise Drive.

9.2. Proposed Sewer Reticulation

It is anticipated that the site will utilise the existing connection points that were provided through the property connection crossing Enterprise Drive. This will connect into the sewer reticulation mains which service the industrial precinct. If the proposed site is unserviceable by gravity sewer a private pump arrangement is to be provided. Details to be provided during detailed design by the hydraulic consultant.

The connection locations are detailed on the engineering drawings included in Appendix A. The internal wastewater network will form part of the design required for the Building Application approval.

9.2.1. Projected Development Loads

The projected loads have been assessed in accordance with SEQ Water Supply and Sewerage Design and Construction Code (SEQ WS&S D&C Code), and the Logan Water Technical Memorandum DD8001 North Maclean conversion rates. The calculated loading is presented in Table 9-1 Below.

Table 9-1 - Development Loading for Sewerage by Locality

Locality	IDM Development Type	GFA (Ha)	Development Density (EP/Ha)	EP
LCC	Lot 104 Warehouse Distribution	4.4	50.30	222

Table 8-1 above demonstrates the development loading is calculated per net area for industrial developments. As part of the Sewer Network Analysis EAG006-30109334-AAR-SNA-04 Arcadis has considered the warehouse GFA for the site area as 5.5Ha (70% of site area) or 276 EP. Given this, it is expected that the existing water network adequately caters to the proposed development loads for the site.

10. Electrical Supply

Bulk earthworks and infrastructure works are currently in progress across the flagstone estate. An existing Powerlink easement traverses the site from north-west to south-east, which accomodates High Voltage Electrical Power transmission lines and towers

Connections for the proposed development will require an extension of the electrical cables of voltage <33kV to be designed by a qualified electrical consultant. The proposed development will utilise existing electrical conduit infrastructure installed as part of the external roadworks, as required by EDQ and Energex.

The need for a pad mount transformer to be located within the development site is subject to further design discussion with Energex; however sufficient provisions have been made within the proposed plan of development to accommodate one if required.

11. Gas Supply

The site is not serviced by gas supply. Should gas services be required for the development, connection and extension requirements shall be undertaken by a specialist consultant and will form part of the future building works applications to APA and EDQ.

12. Telecommunications

Telecommunication services have been identified within all road reserves bounding the subject site. It is proposed to utilise this existing surrounding infrastructure to provide telecommunication services to the proposed development.

Connection from the proposed development to the above-mentioned services will be undertaken by a specialist consultant and will form part of the future building works applications to the appropriate Telecommunications entity.

13. Conclusion

This Engineering Services Report (ESR) has been prepared on behalf of CH Hydrangea Pty Ltd (Applicant) in support of a development application over land at 4499-4651 Mount Lindesay Highway, North Maclean QLD 4280 and described as Lot 39 on SP258739 (site). This PDA Development Application seeks approval for the following aspects of development:

- Development Permit for a Material Change of Use for Warehouse (Distribution Centre).
- In support of Reconfiguration of Lot 1 into 5, plus balance lot and access easements

This report demonstrates that the proposed development can connect to local stormwater, potable water, sewerage reticulation, electrical, telecommunications and transport infrastructure. The proposed servicing strategy is summarised below:

Site Access – one (1) heavy vehicle and one (1) light vehicle crossovers are proposed for the development which will provide access from the external estate road.

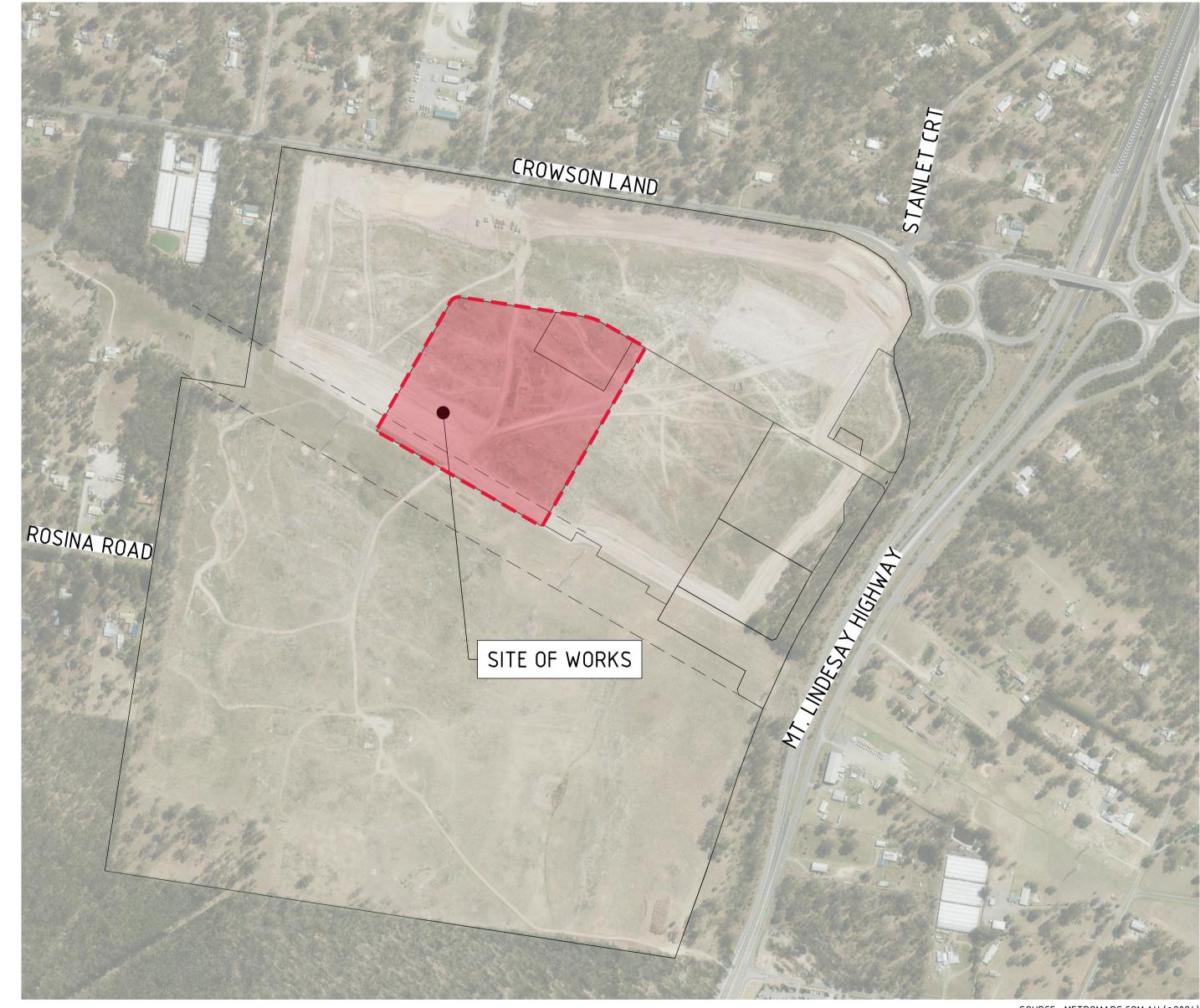
Stormwater Management – The proposed development will introduce a new internal pit and pipe system and connect into the existing lawful point of discharge. Refer to the SBSMP for the overarching development that has been prepared by Northrop (BN241827_SBSMP001_A_Lot 104 Flagstone Estate), and the overarching precinct SBSMP prepared by Arcadis (EAG001-30109334-AAR Revision 12).

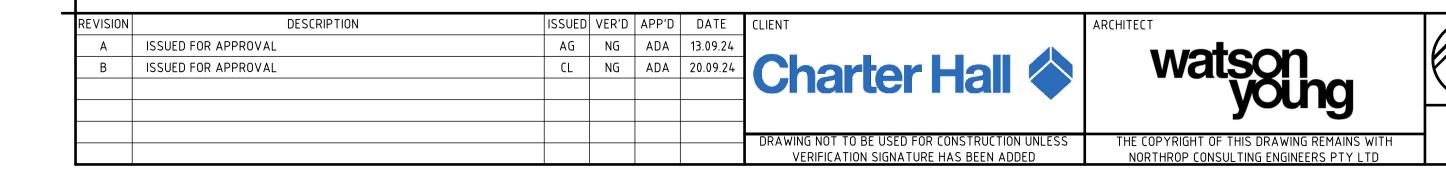
Water Supply – The development's internal water reticulation network will have a single connection point to an existing DN150mm reticulation water main located within the Industrial Road fronting the site (Enterprise Drive). The proposed development loads are less than the projected loads for the site as outlined in Arcadis Water Network Assessment EAG005-30109334-AAR-WNA.

Sewer Reticulation – The development's internal sewer reticulation network will connect to the existing DN160 property connection from manhole 2/HC11 located in the road verge towards the northern boundary of the site. The proposed development loads are less than the projected loads for the site as outlined in Arcadis Sewer Network Assessment EAG006-30109334-AAR-SNA

• **Electrical Supply** – Connection to existing electrical infrastructure within the Council Industrial Road fronting the site (Enterprise Drive).

Gas Supply – No Gas infrastructure was identified in the vicinity of the site. Should gas services be required for the development, connection and extension requirements shall be undertaken by a specialist consultant and will form part of the future building works applications to both APA and EDQ.


Telecommunications – Connection to existing telecommunications infrastructure surrounding the site will be made via underground cables to the conduit network installed as part of the estate works in the Industrial Road fronting the site (Enterprise Drive).


Appendix A – Civil Engineering Plans

PROPOSED INDUSTRIAL DEVELOPMENT LOT 104, 4499-4651 MT. LINDESAY HIGHWAY, NORTH MACLEAN QLD 4280

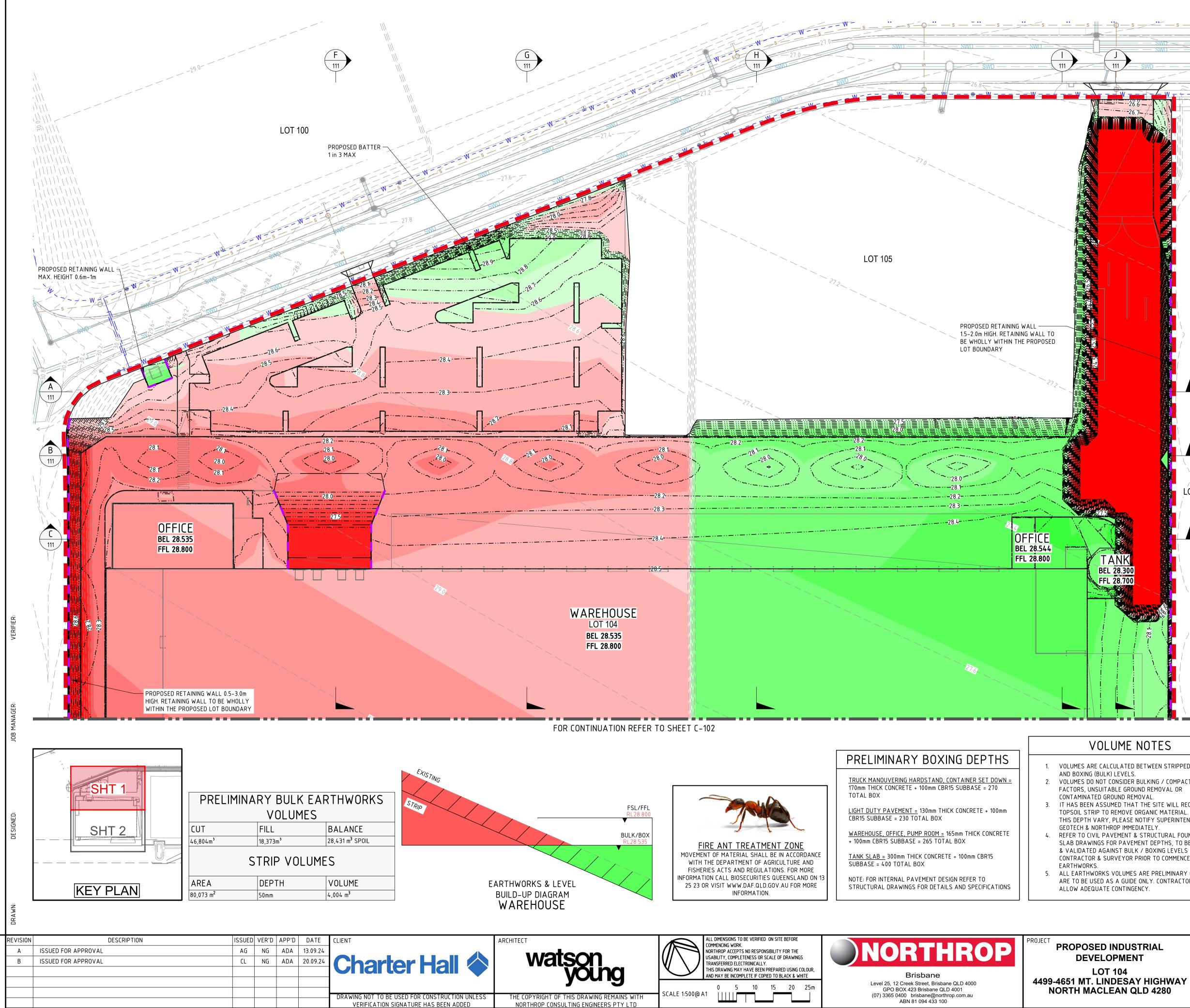
LOCALITY PLAN

SOURCE : METROMAPS.COM.AU (•2024)

DRAWING SCHEDULE

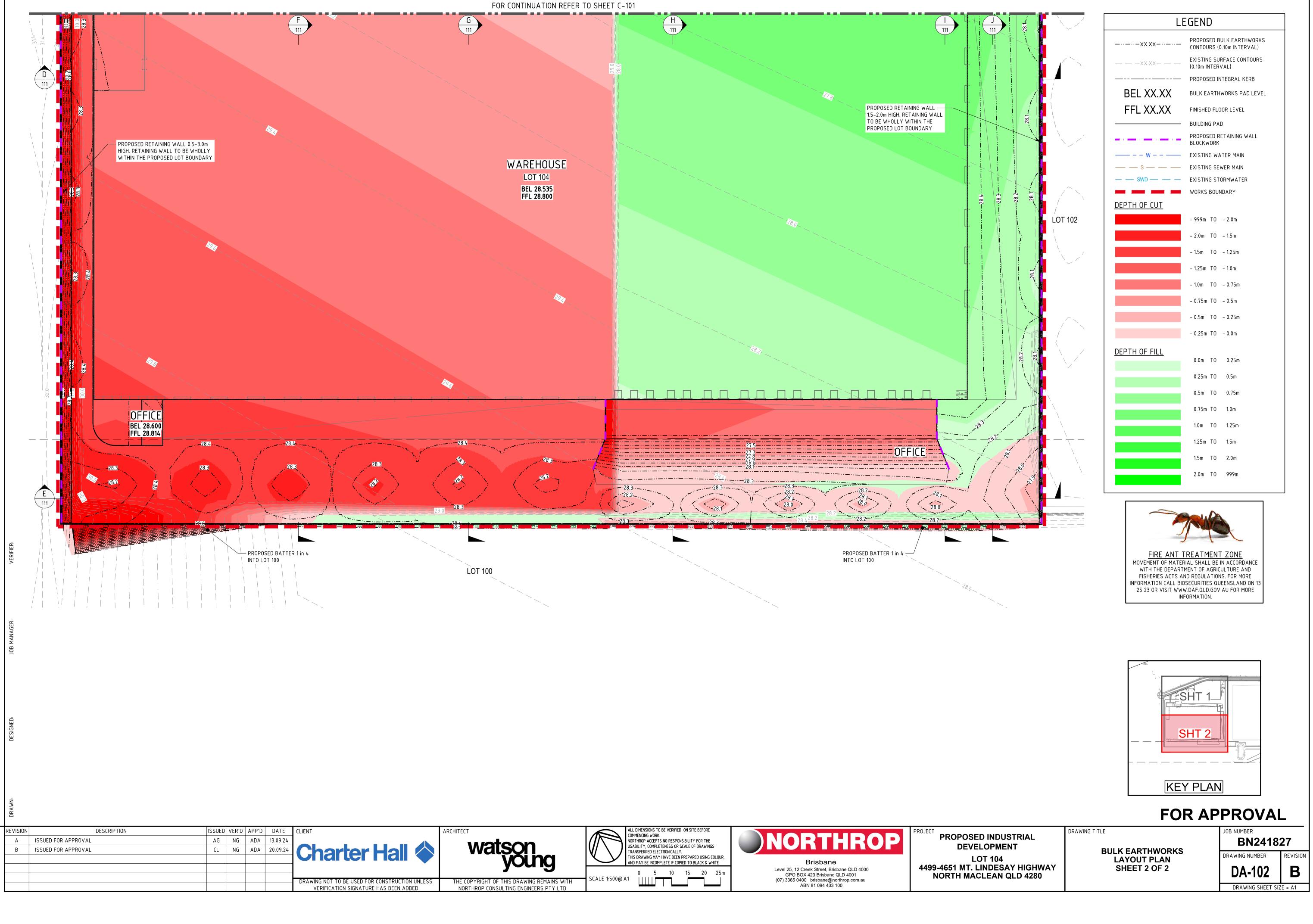
DWG NUMBER	DWG TITLE
DA-001	COVER SHEET, LOCALITY PLAN AND DRAWING
DA-101	BULK EARTHWORKS LAYOUT PLAN - SHEET 10
DA-102	BULK EARTHWORKS LAYOUT PLAN - SHEET 2
DA-111	BULK EARTHWORKS SECTIONS – SHEET 1 OF 4
DA-112	BULK EARTHWORKS SECTIONS - SHEET 2 OF 4
DA-113	BULK EARTHWORKS SECTIONS - SHEET 3 OF 4
DA-114	BULK EARTHWORKS SECTIONS - SHEET 4 OF 4
DA-211	CIVIL GRADING & SERVICES LAYOUT PLAN - SH
DA-212	CIVIL GRADING & SERVICES LAYOUT PLAN - SH
DA-311	STORMWATER DRAINAGE CATCHMENT LAYOUT
DA-381	STORMWATER TANK LAYOUT PLAN & DETAILS
DA-382	STORMWATER TANK SECTIONS

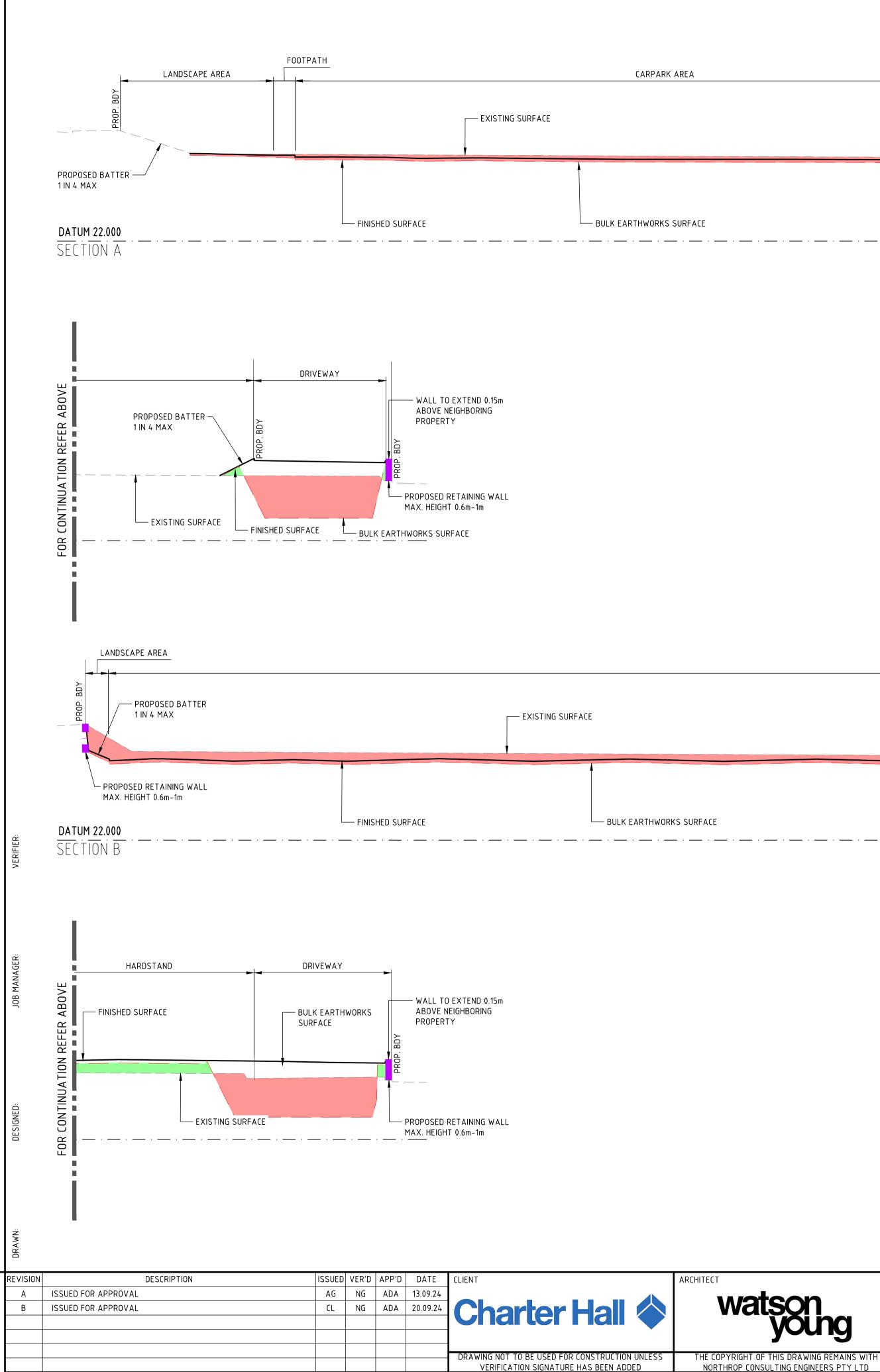
ALL DIMENSIONS TO BE VERIFIED ON SITE BEFORE COMMENCING WORK. NORTHROP ACCEPTS NO RESPONSIBILITY FOR THE USABILITY, COMPLETENESS OR SCALE OF DRAWINGS TRANSFERRED ELECTRONICALLY. THIS DRAWING MAY HAVE BEEN PREPARED USING COLOUR, AND MAY BE INCOMPLETE IF COPIED TO BLACK & WHITE


NOT TO SCALE

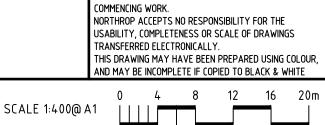
Brisbane Level 25, 12 Creek Street, Brisbane QLD 4000 GPO BOX 423 Brisbane QLD 4001 (07) 3365 0400 brisbane@northrop.com.au ABN 81 094 433 100 PROPOSED INDUS DEVELOPMEN LOT 104 4499-4651 MT. LINDESA NORTH MACLEAN G

	PROVAL
- COVER SHEET, LOCALITY PLAN AND DRAWING SCHEDULE 80	JOB NUMBER BN241827
	DRAWING NUMBER REVISION
	DRAWING TITLE COVER SHEET, LOCALITY PLAN

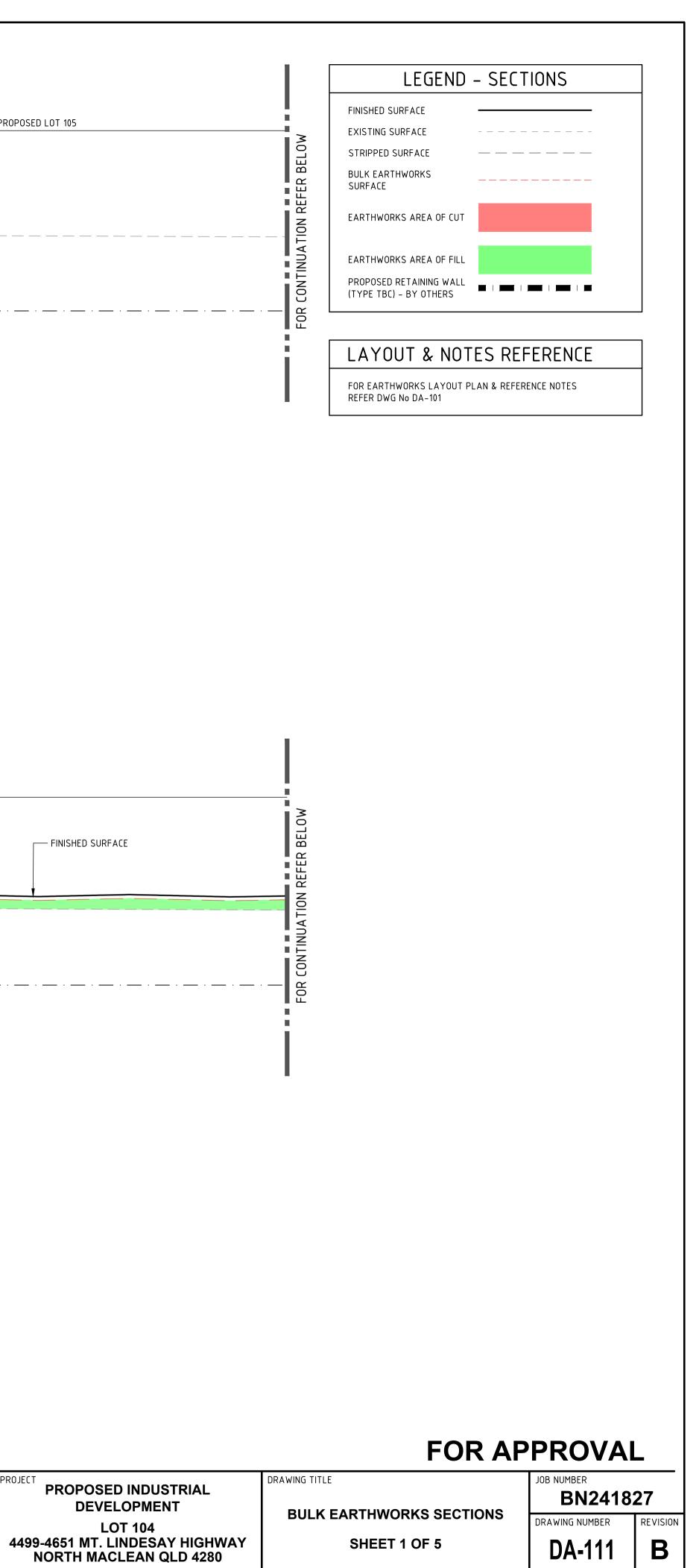

HEET 1 OF 2 HEET 2 OF 2 T PLAN



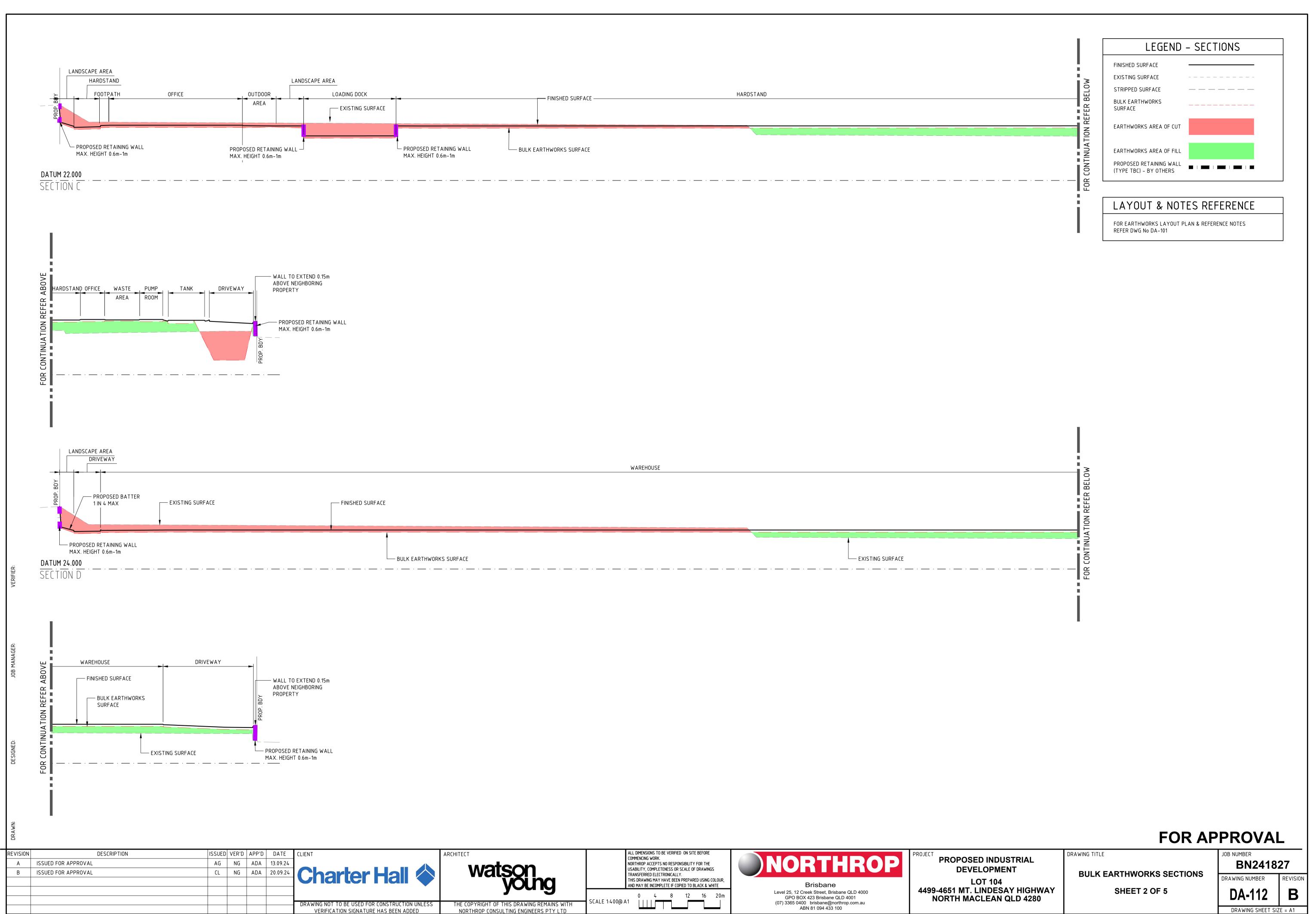
	LE	EGEND
SWD SW	LE 	PROPOSED BULK EARTHWORKS CONTOURS (0.10m INTERVAL) EXISTING SURFACE CONTOURS (0.10m INTERVAL) PROPOSED INTEGRAL KERB BULK EARTHWORKS PAD LEVEL FINISHED FLOOR LEVEL BUILDING PAD PROPOSED RETAINING WALL BLOCKWORK EXISTING SEWER MAIN EXISTING SEWER MAIN EXISTING SEVER MAIN EXISTING STORMWATER WORKS BOUNDARY - 999m TO - 2.0m - 1.5m TO - 1.5m - 1.5m TO - 1.25m - 1.25m TO - 0.75m - 0.75m TO - 0.5m
		- 0.75m TO - 0.5m - 0.5m TO - 0.25m - 0.25m TO - 0.0m
LOT 102		0.0m TO 0.25m 0.25m TO 0.5m 0.5m TO 0.75m 0.75m TO 1.0m 1.0m TO 1.25m 1.25m TO 1.5m 1.5m TO 2.0m 2.0m TO 999m
	THE CONTRACTORS IS TO AL AMOUNTS FOR CONTINGENCIE EARTHWORKS/GEOTECH PARAMETERS: SWELLING/COMPACTION SUBGRADE CBR - UNKN SUBGRADE SUITABLE F IF CUT IS CONSIDERED S TOPSOIL DEPTH - UNKN ONSITE SOILS ARE DISF	OR FILLING/PAVEMENT – UNKNOWN SUITABLE FOR FILLING – UNKNOWN NOWN PERSIVE/HIGHLY REACTIVE – UNKNOWN
		SETOUT NOTES
E NOTES TED BETWEEN STRIPPED SURFACE ELS. DER BULKING / COMPACTION GROUND REMOVAL OR REMOVAL. THAT THE SITE WILL REQUIRE 50mm VE ORGANIC MATERIAL. SHOULD ISE NOTIFY SUPERINTENDENT, IMEDIATELY. NT & STRUCTURAL FOUNDATION / INTENT DEPTHS, TO BE CONFIRMED BULK / BOXING LEVELS BY OR PRIOR TO COMMENCEMENT OF MES ARE PRELIMINARY ONLY, AND UIDE ONLY. CONTRACTOR IS TO INGENCY.	 EARTHWORKS LEVELS SLAB THICKNESS AND STRUCTURAL ENGINEE 'FOR CONSTRUCTION'S FINAL PAD THICKNESS ASSOCIATED FINAL CI CONSTRUCTION SETOU ALL RETAINING WALL TO FINISHED SURFACE TO NEAREST 200mm H DESIGNS AND DETAILE STRUCTURAL DESIGN REFER TO ARCHITECTU SETOUT INFORMATION CONTRACTOR TO CONF LOCATION AND BUILDI 	HEIGHT LABELS ARE CALCULATED LEVELS INCLUDING TOPSOIL (AND EIGHT). FINAL RETAINING WALL ED STEPPING IS SUBJECT TO BY OTHERS. JRAL DRAWINGS FOR BUILDING FIRM SITE SURVEY STATION NG/PAD SETOUT LOCATIONS IN RIES PRIOR TO CONSTRUCTION AND ENT IF ANY
	FO	R APPROVAL
USTRIAL ENT	BULK EARTHWORKS	JOB NUMBER BN241827 DRAWING NUMBER RE

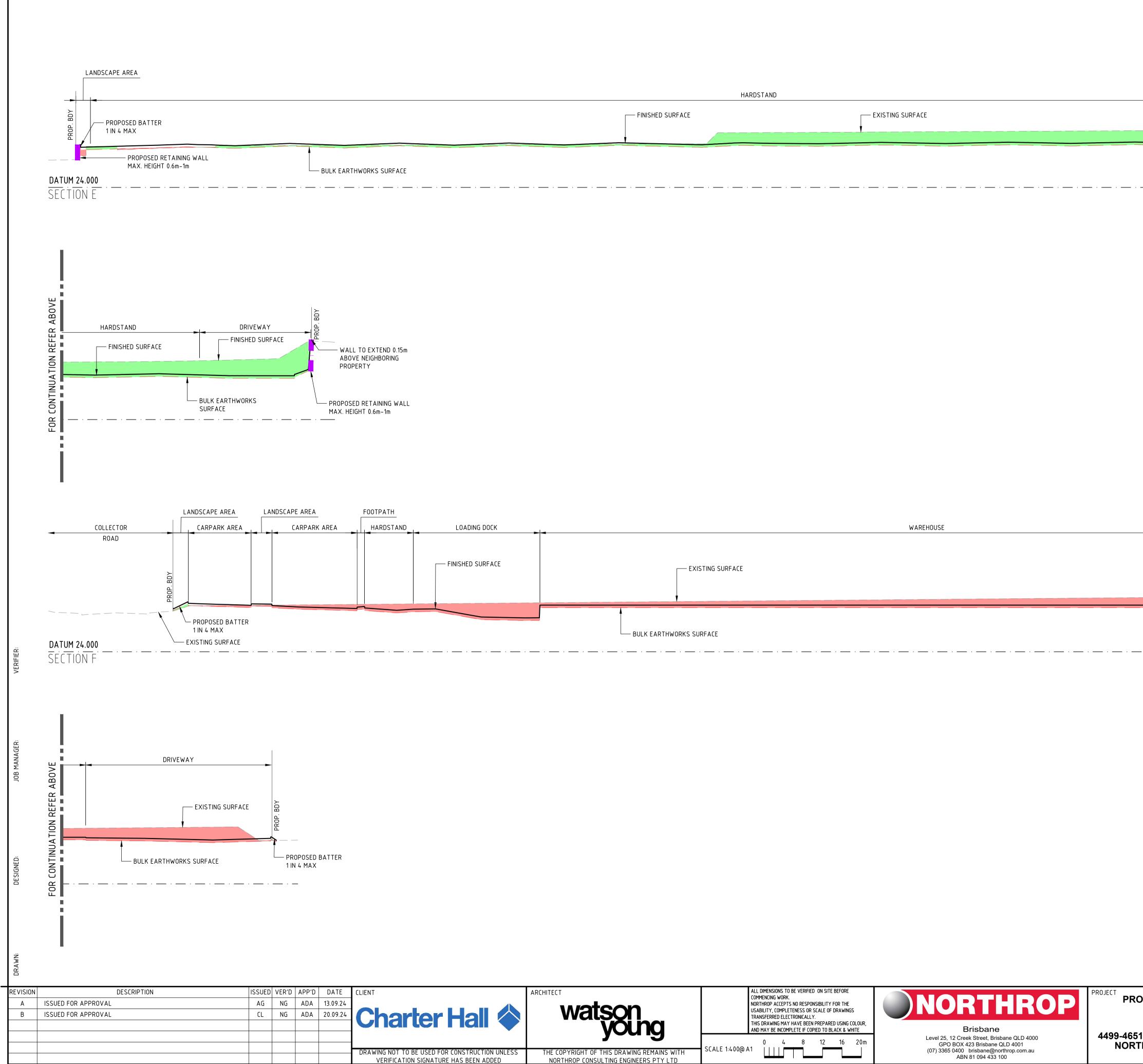

LAYOUT PLAN SHEET 1 OF 2

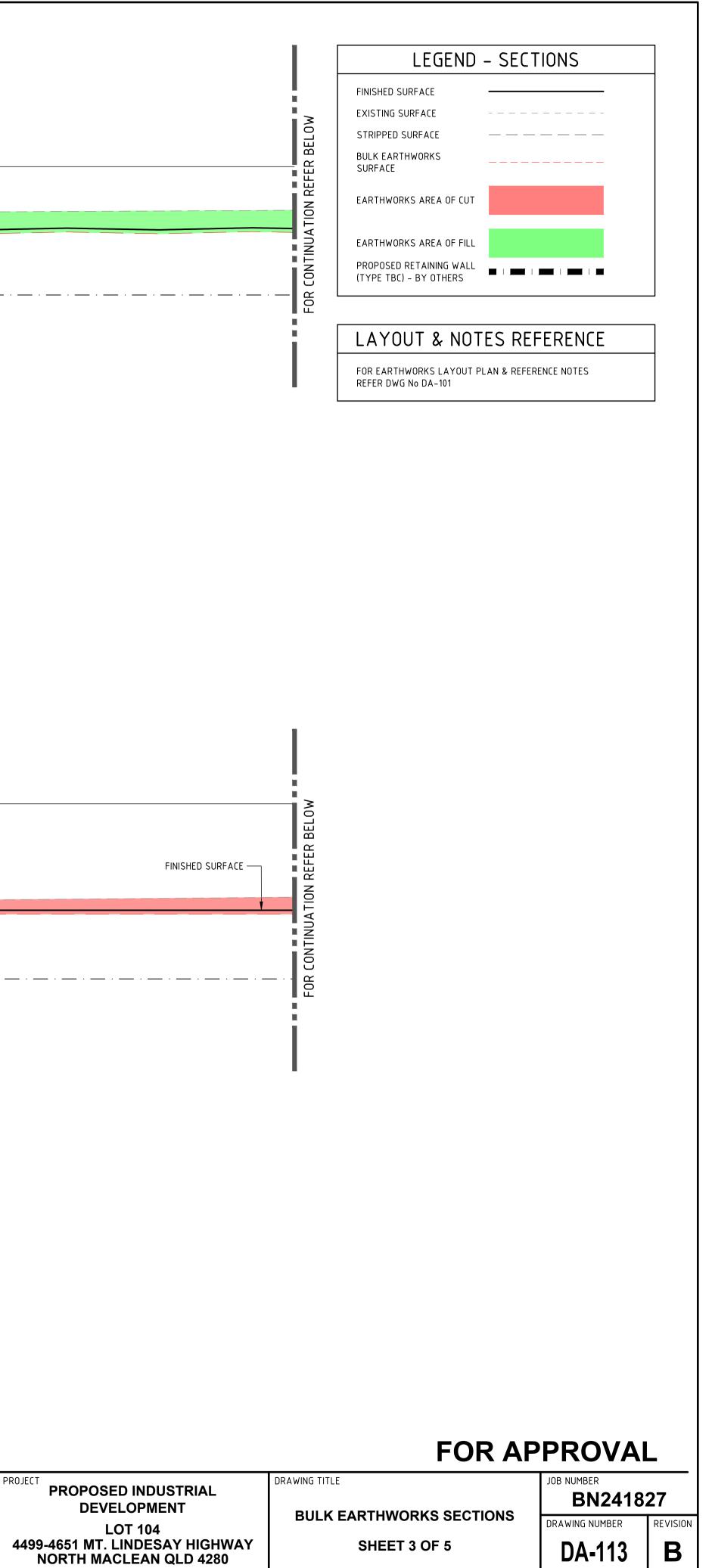
Β DA-101 DRAWING SHEET SIZE = A1

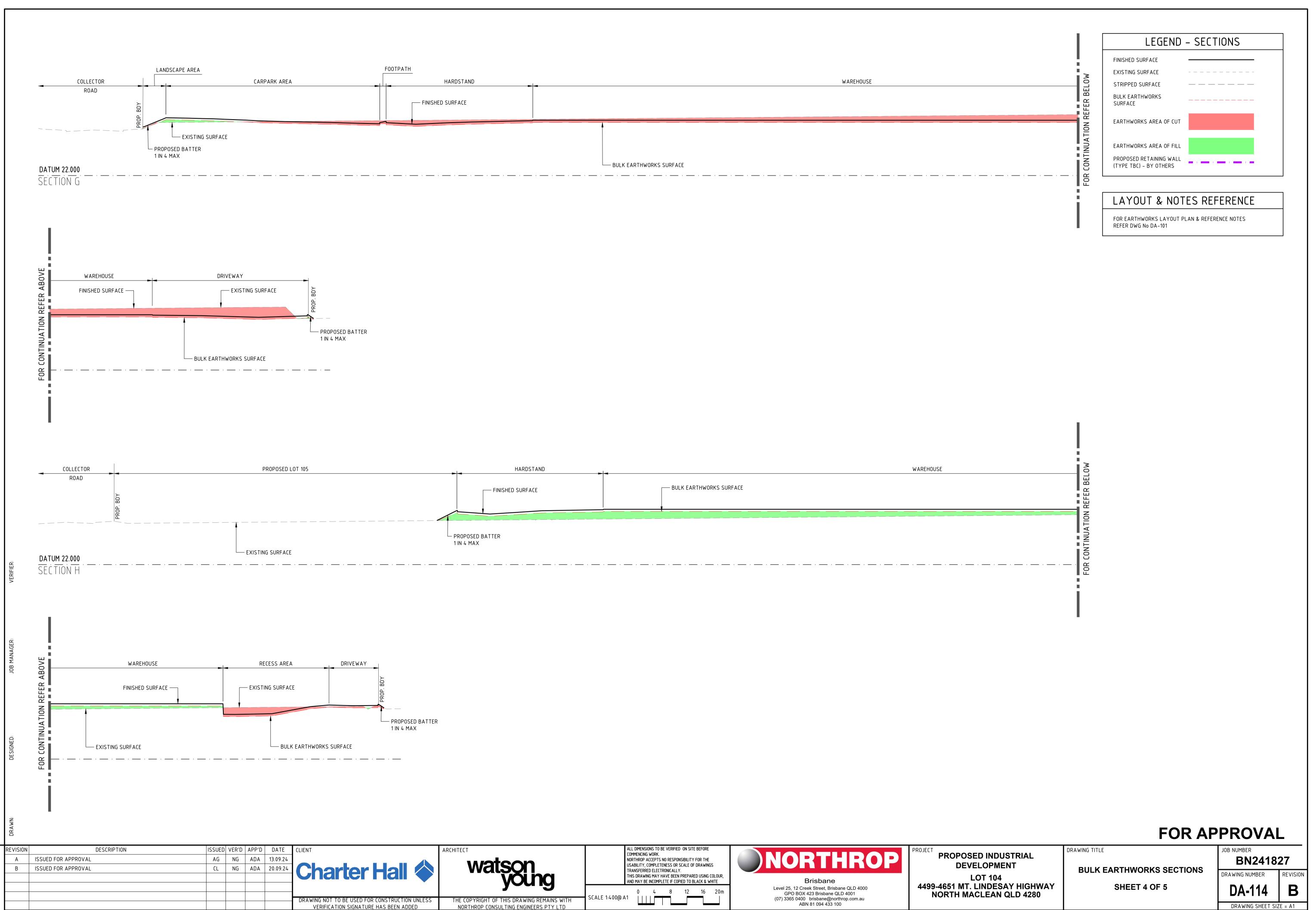


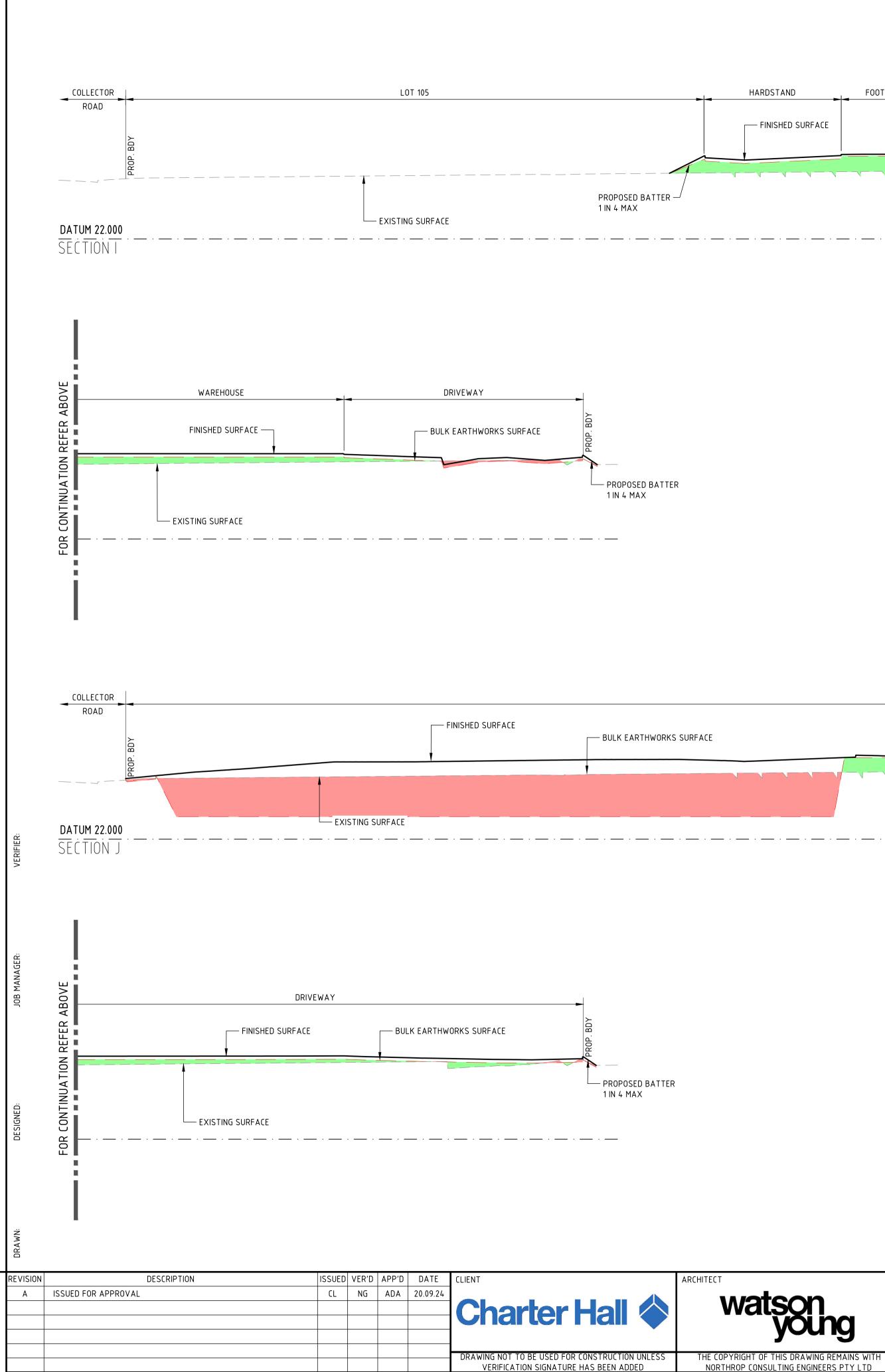
PROP. BDY	EXISTING SURFACE	PROPOSED LOT 105
HARDSTAND		FINISHED SURFACE
ALL DIMENSIONS TO BE VERIFIED ON SITE BEFORE COMMENCING WORK. NORTHROP ACCEPTS NO RESPONSIBILITY FOR THE		PROJECT PROPOSED INDUS

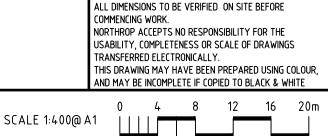


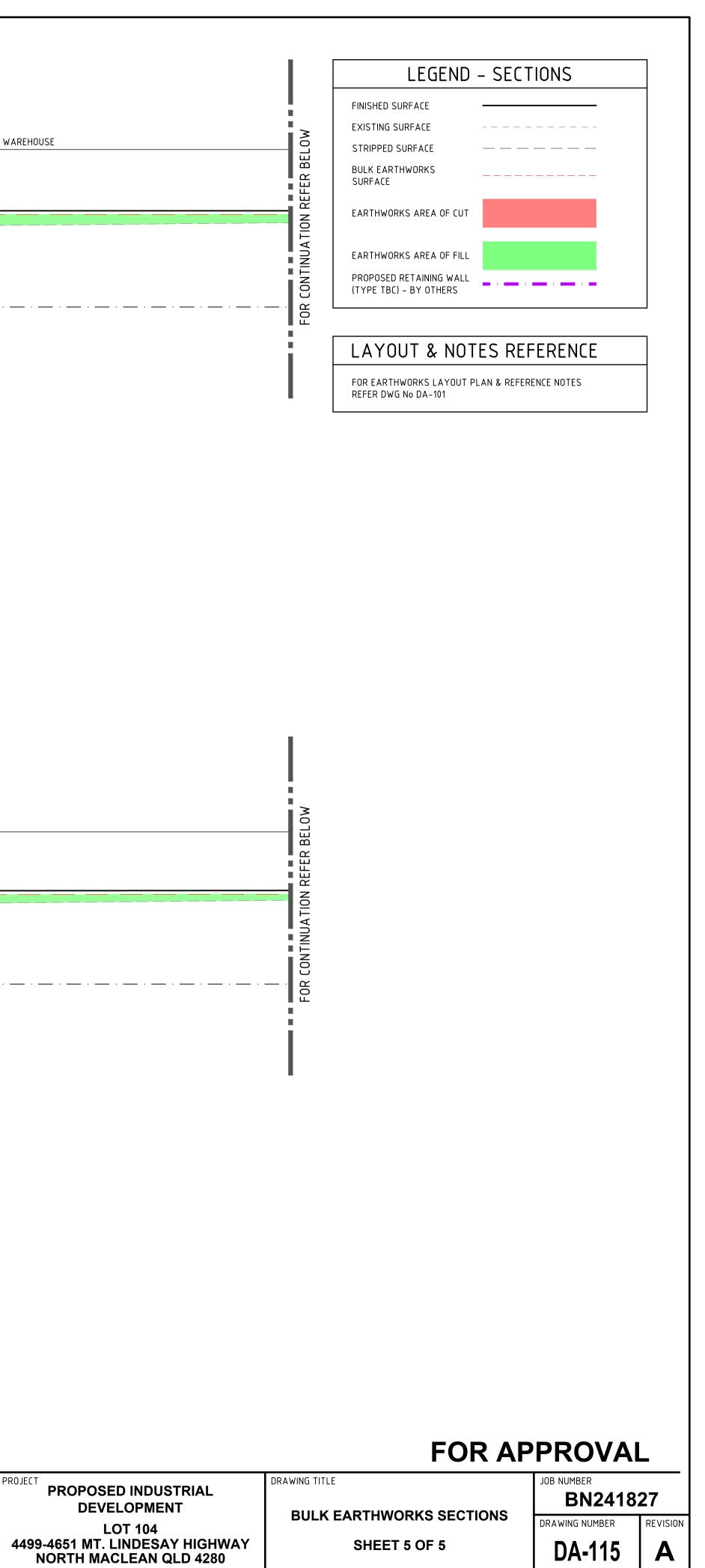

(07) 3365 0400 brisbane@northrop.com.au ABN 81 094 433 100

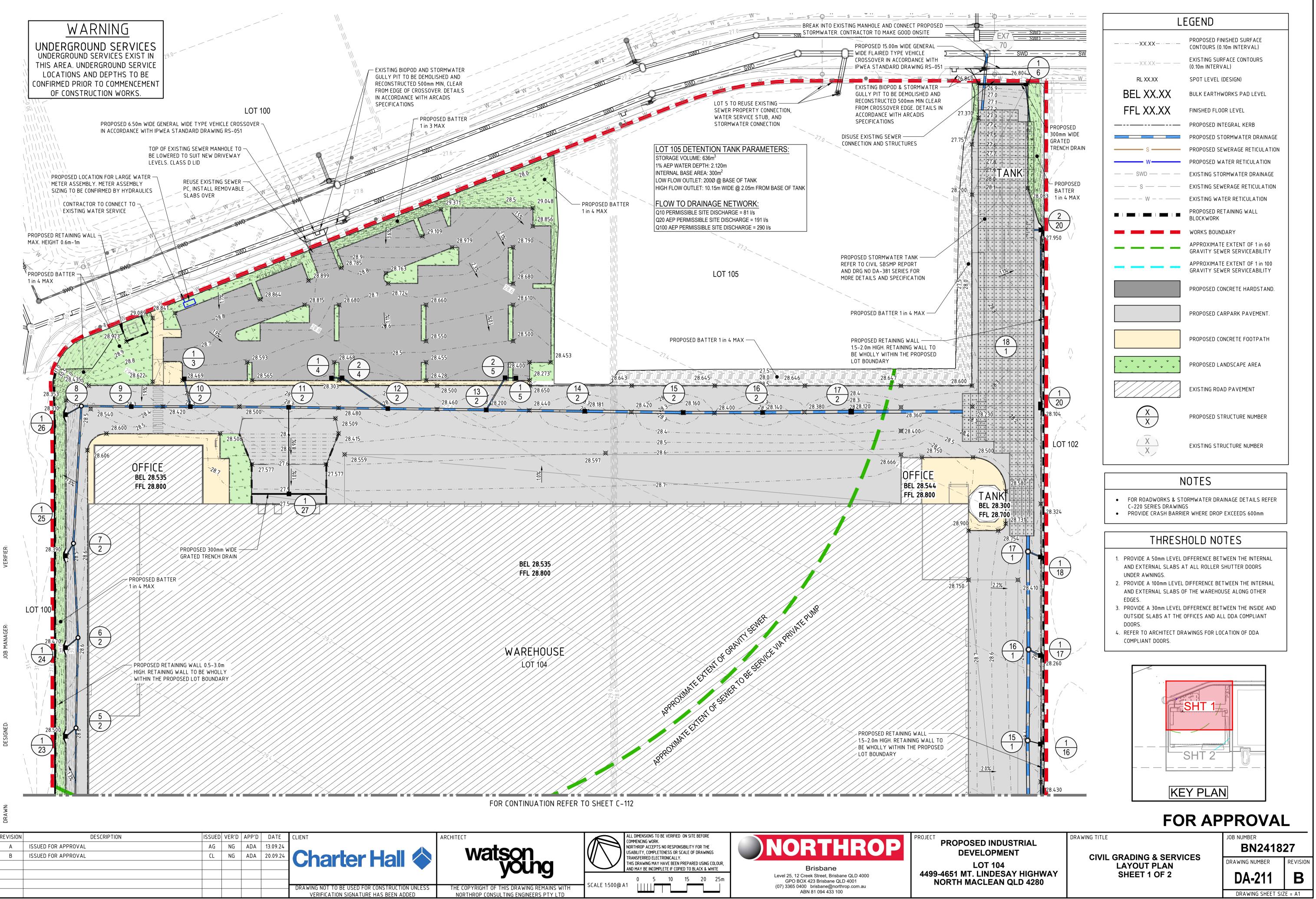

DRAWING SHEET SIZE = A1

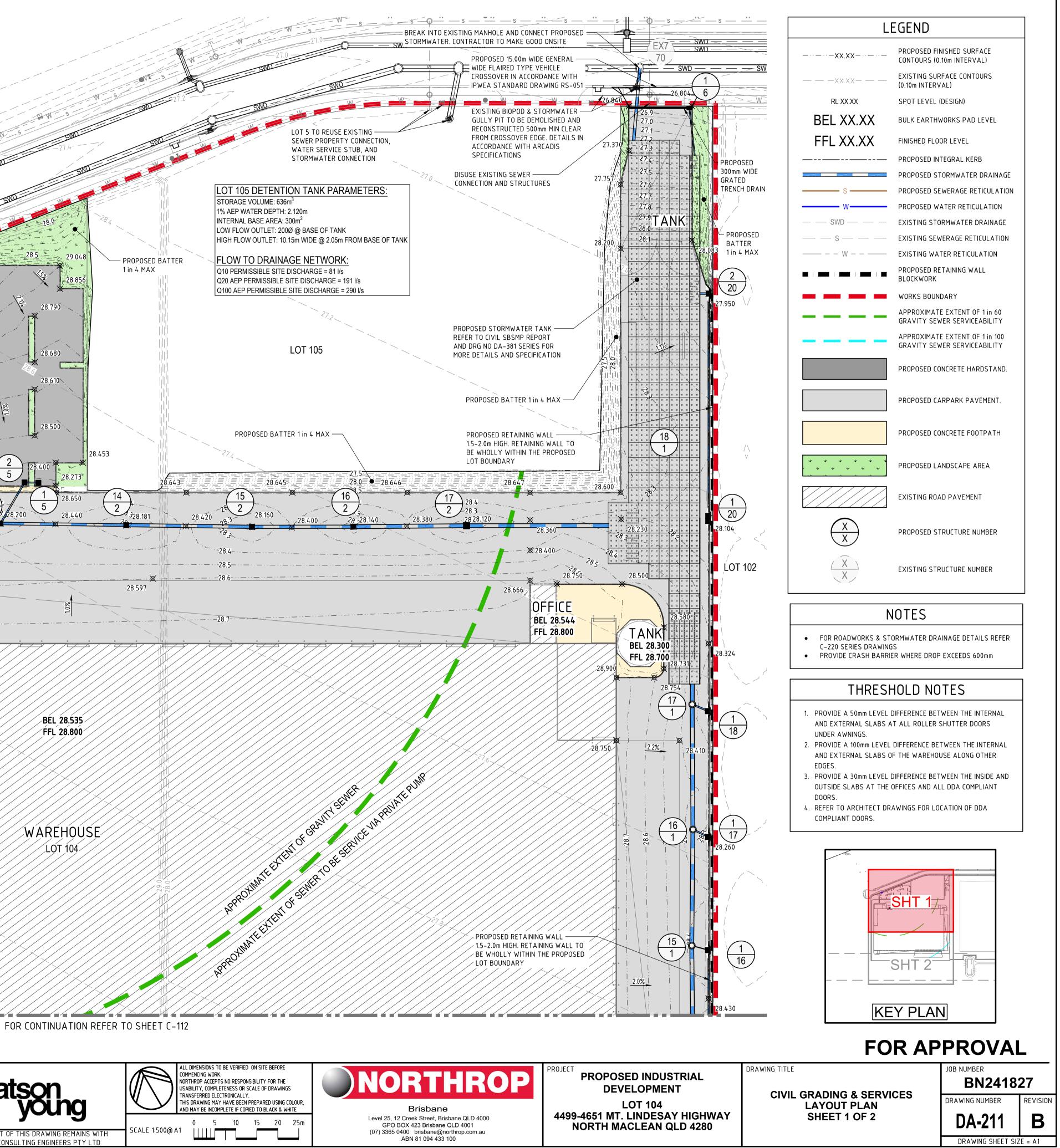

	FINISHED SURFACE	HARDSTAND	
BULK E	ARTHWORKS SURFACE		
	WAREHOUSE		
			EXISTING SURFACE

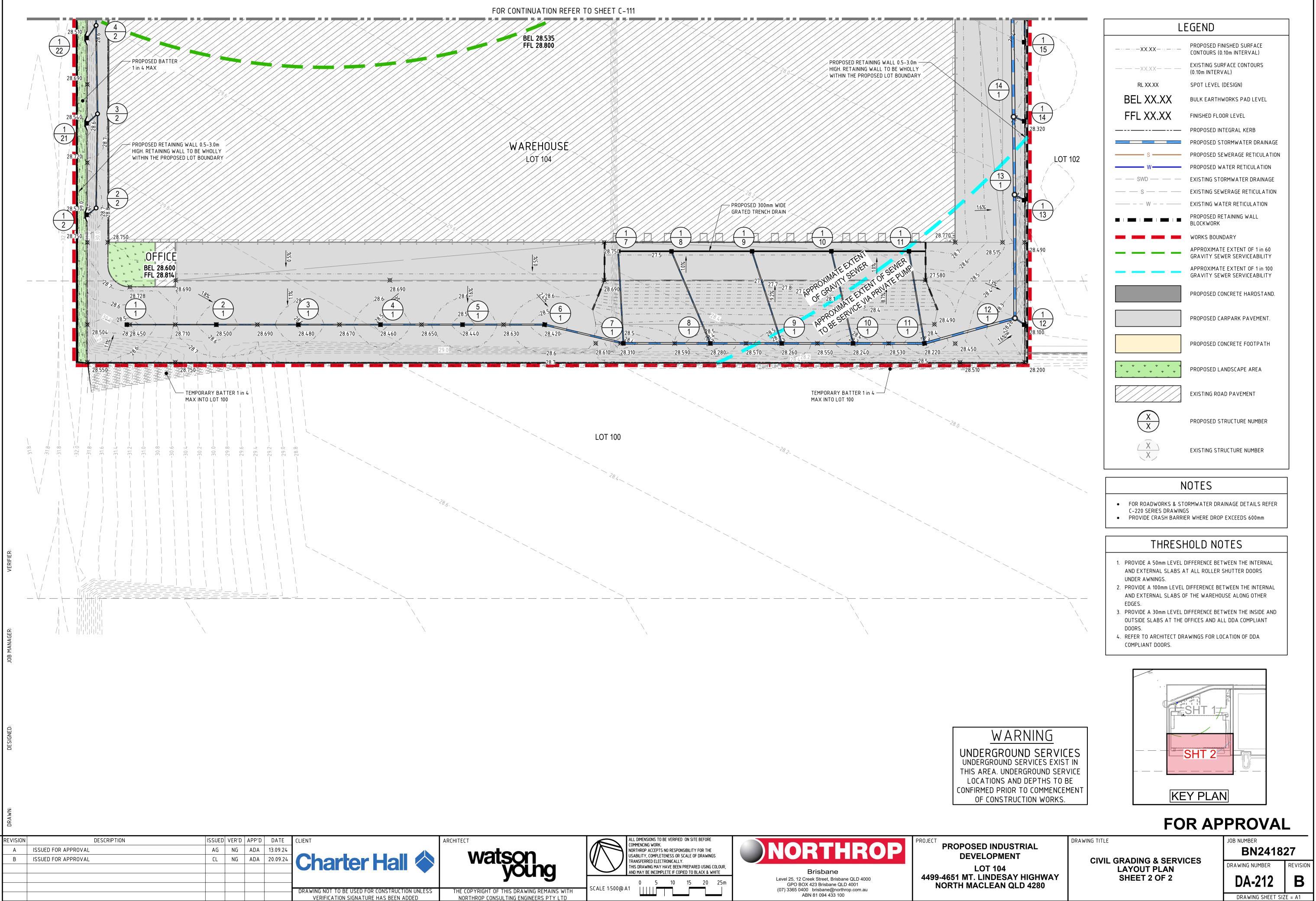

			HARDSTAND								
]	FINISHED SUR	FACE			EXISTING S	URFACE					
· ·	- · · · .	· · ·	_ · · ·	_ · · · _	· · ·	· ·	· · · _	· ·	· · · .	· · ·	· · ·
						WAREHOUSE					
		EXISTING SURFA	CE								FIN
											Г II.
A		·									
L 	— BULK EARTHW	ORKS SURFACE									


DRAWING SHEET SIZE = A1

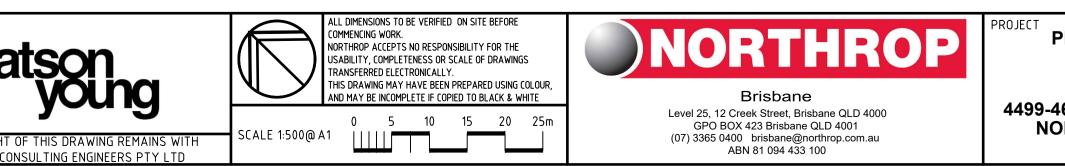

				WAREHOUSE	
	BULK EARTH	WORKS SURFACE	· · · ·	· · · ·	· · · · · ·
HARDSTAND FINISHED SURFACE		BULK EARTHWORKS SURFA	ACE		WAREHOUSE


IARDSTAND FOOTPATH		WAREHOUSE
- FINISHED SURFACE	BULK EARTHWORKS SURFACE	
	· · · · · · · · _	· · · · · · ·
	DRIVEWAY	
· · · · · · · · _	· · · · · · · · _	· · · · · · · ·





DRAWING SHEET SIZE = A1


DESCRIPTION	ISSUED	VER'D	APP'D	DATE	CLIENT	ARCHITECT
ISSUED FOR APPROVAL	AG	NG	ADA	13.09.24		
ISSUED FOR APPROVAL	CL	NG	ADA	20.09.24	Charter Hall	Wa
					DRAWING NOT TO BE USED FOR CONSTRUCTION UNLESS VERIFICATION SIGNATURE HAS BEEN ADDED	THE COPYRIGHT ON NORTHROP CON
	ISSUED FOR APPROVAL	ISSUED FOR APPROVAL AG	ISSUED FOR APPROVAL AG NG	ISSUED FOR APPROVAL AG NG ADA	ISSUED FOR APPROVAL AG NG ADA 13.09.24	ISSUED FOR APPROVAL AG NG ADA 13.09.24 ISSUED FOR APPROVAL CL NG ADA 20.09.24 ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR APPROVAL ISSUED FOR CONSTRUCTION UNLESS

F	EVISION	DESCRIPTION	ISSUED	VER'D	APP'D	DATE	CLIENT	ARCHITECT
	А	ISSUED FOR APPROVAL	AG	NG	ADA	13.09.24		
	В	ISSUED FOR APPROVAL	CL	NG	ADA	20.09.24	Charter Hall 🏈	Wa
							DRAWING NOT TO BE USED FOR CONSTRUCTION UNLESS	THE COPYRIGHT (
L							VERIFICATION SIGNATURE HAS BEEN ADDED	NORTHROP CON

PROPOSED INDUSTRIAL DEVELOPMENT LOT 104 4499-4651 MT. LINDESAY NORTH MACLEAN QL

_ _ _ X X X _ _ _ _

X/XX

X.XXXXha

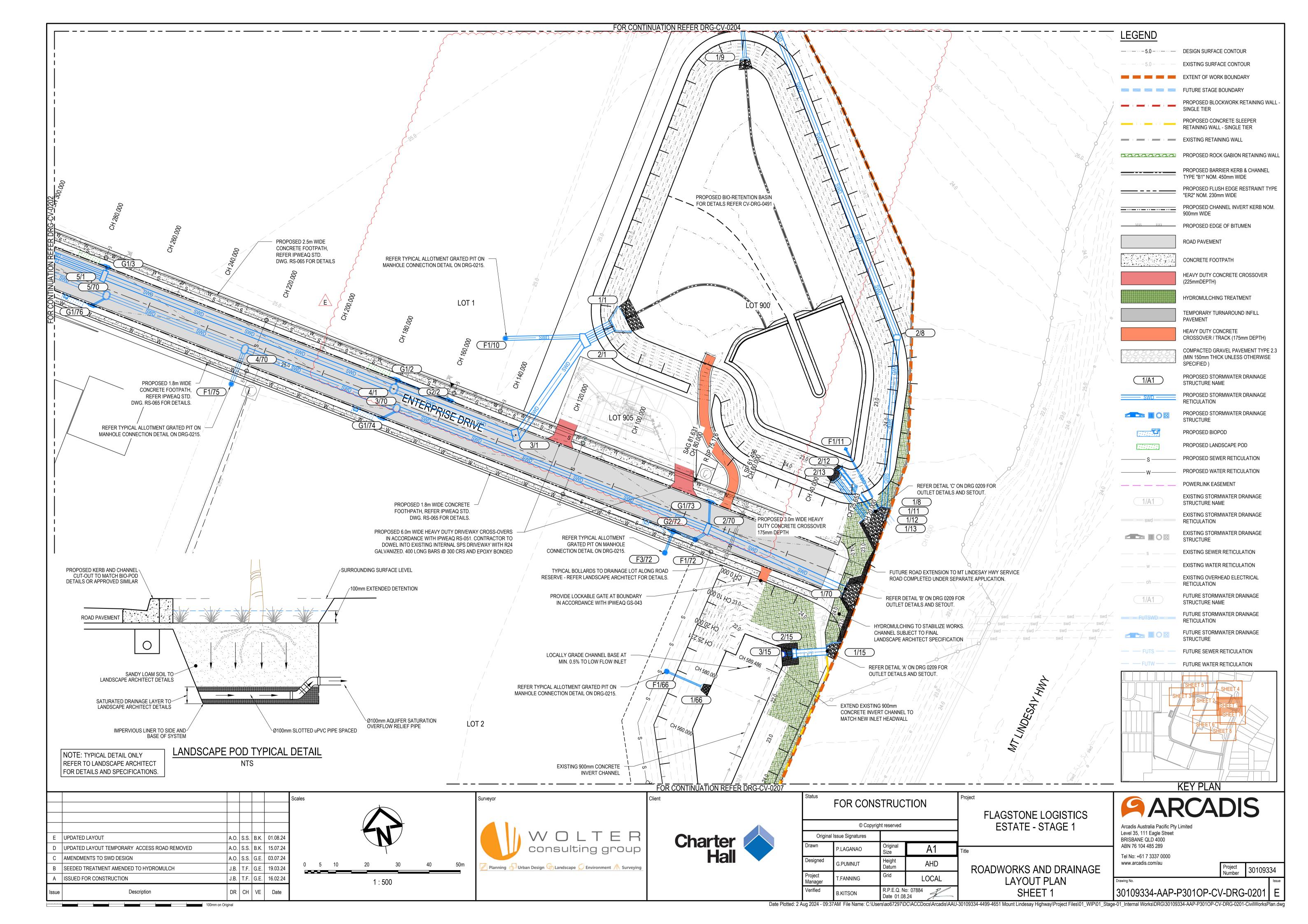
----- XX.XX PROPOSED SURFACE CONTOURS EXISTING SURFACE CONTOURS PROPOSED STORMWATER DRAINAGE EXISTING STORMWATER DRAINAGE PROPOSED CATCHMENT BOUNDARY PROPOSED CATCHMENT IDENTIFIER AND AREA (ha)

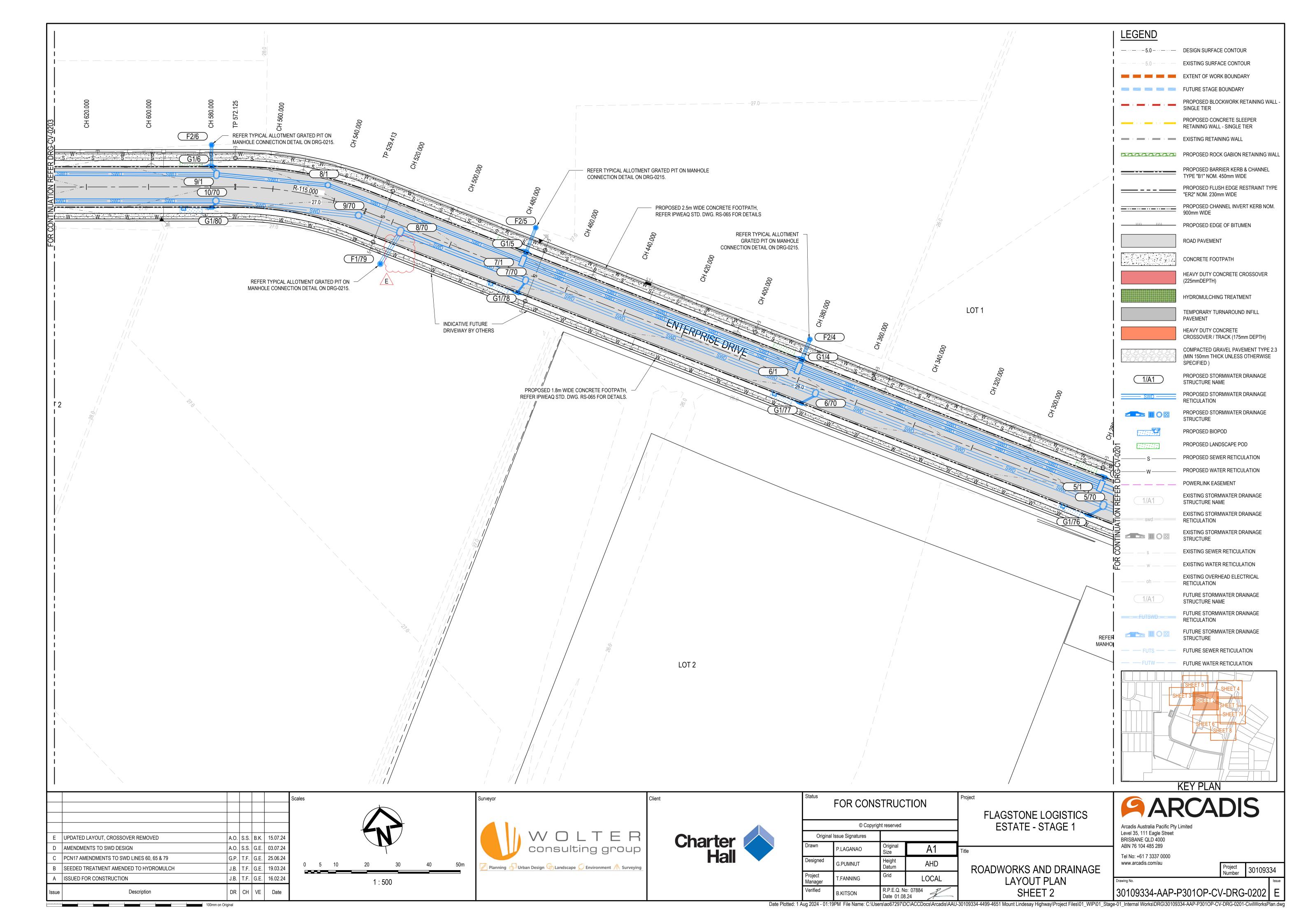
CATCHMENT TABLE (POST DEVELOPMENT) CATCHMENT NAME AREA (ha) FRACTION IMPERVIOUS (%)

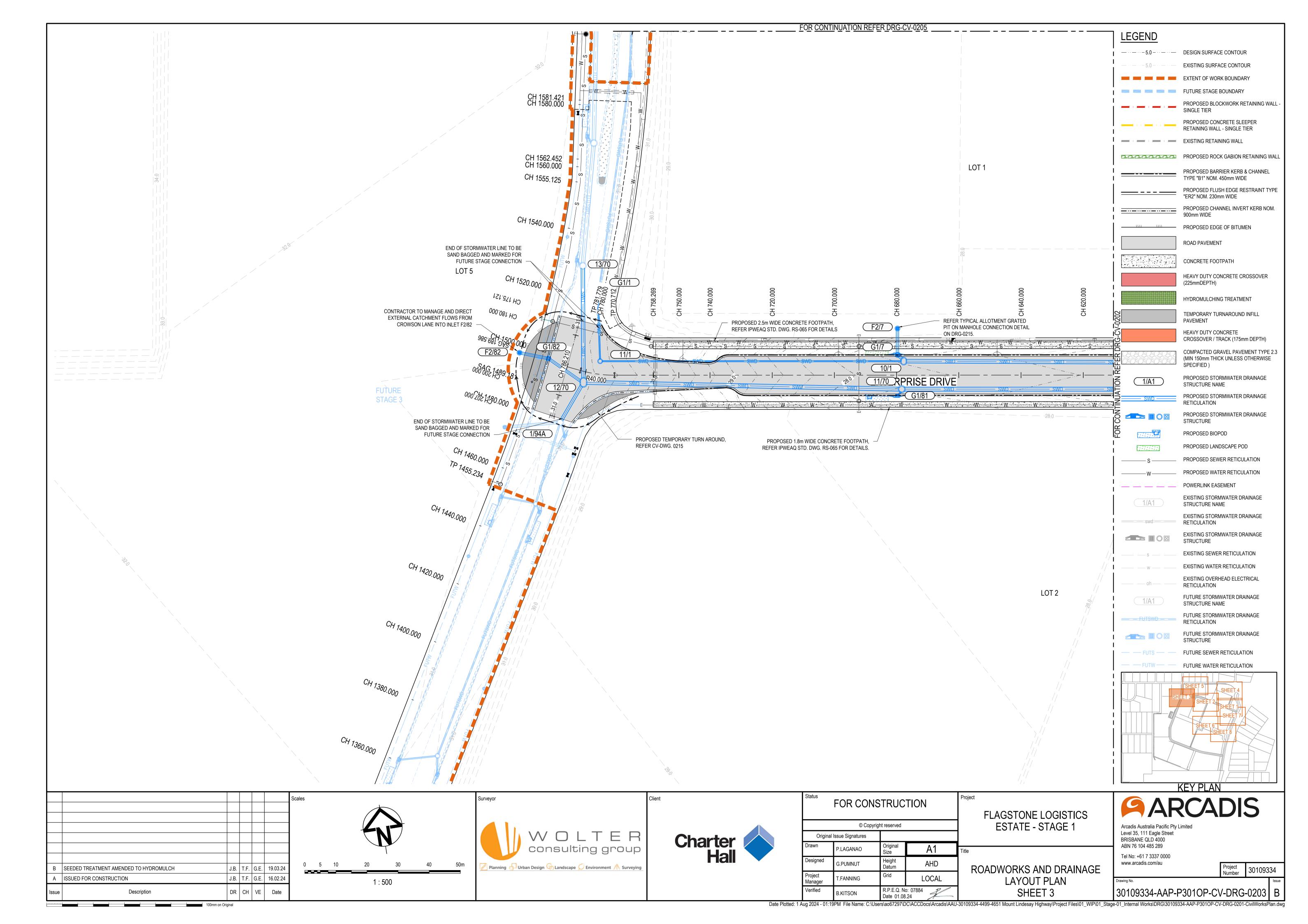
A1	2.2215	100
A2	1.3479	100
B1	2.7949	100
В2	1.1139	100
С1	0.2642	100
D1	0.0705	100
E1	1.1082	0
F1	0.0573	0

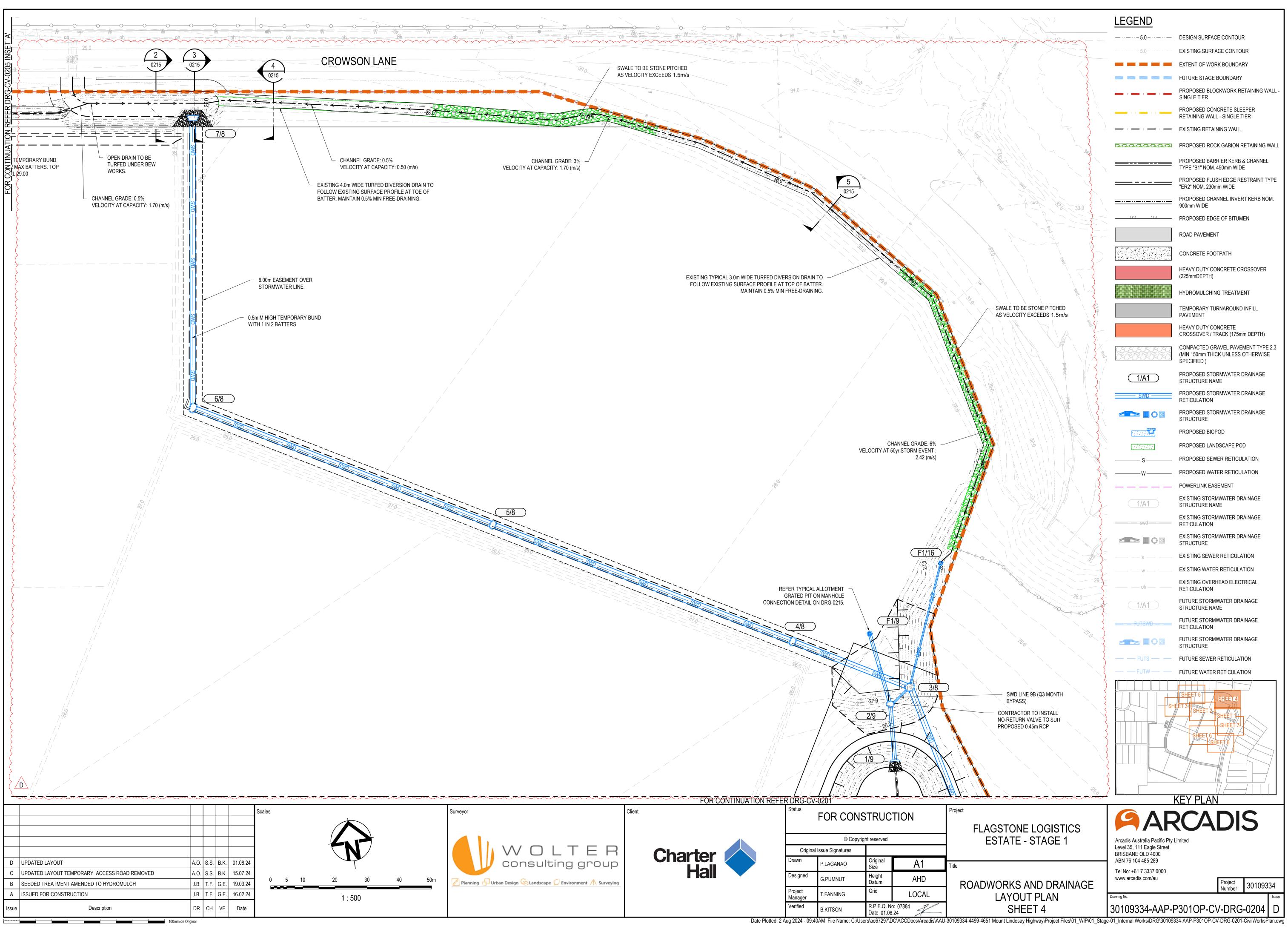
FOR APPROVAL

DRAWING TITLE

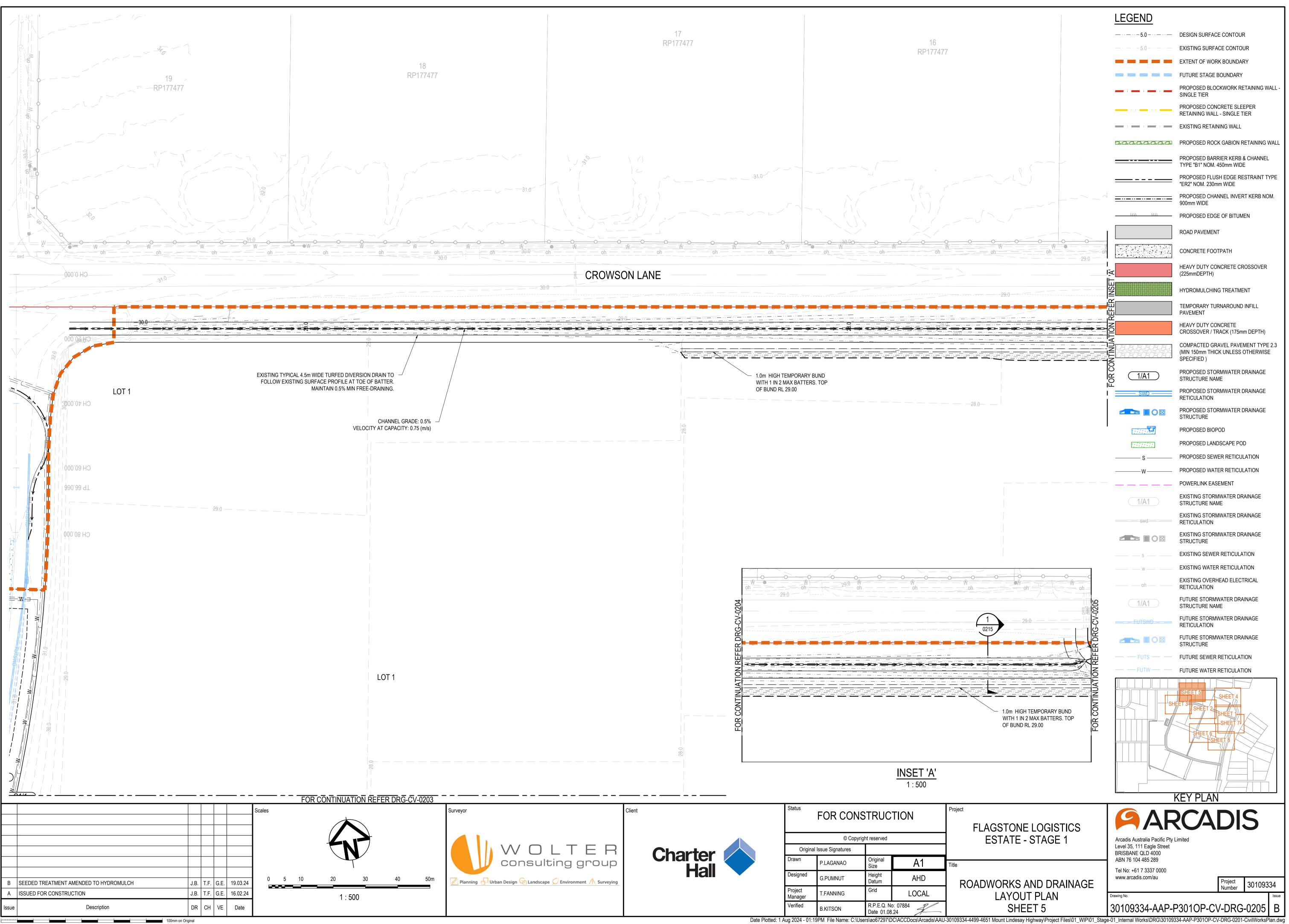

STORMWATER DRAINAGE CATCHMENT LAYOUT PLAN

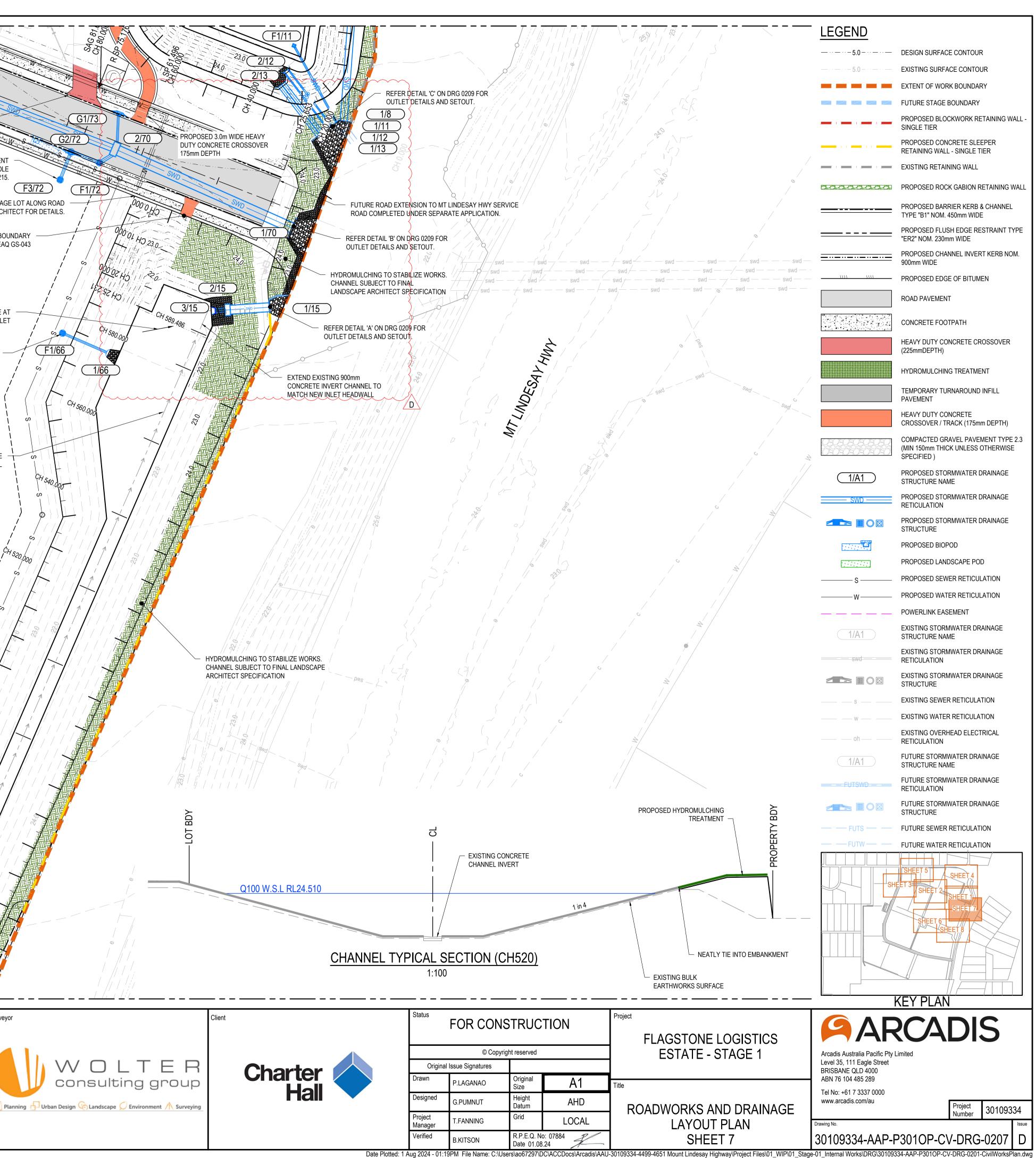

Y HIGHWAY	
QLD 4280	

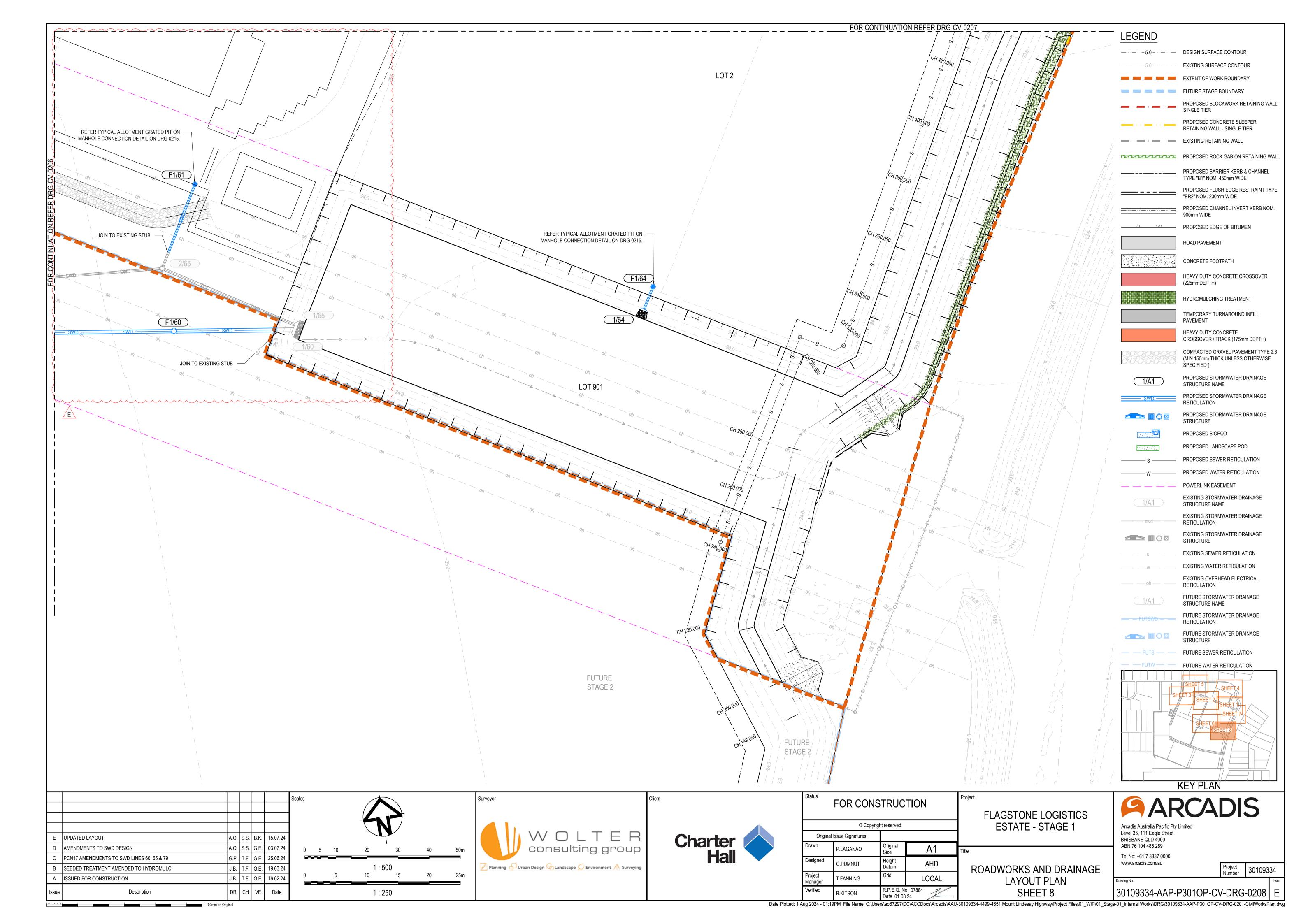

JOB NUMBER **BN241827** DRAWING NUMBER REVISION DA-311 Β DRAWING SHEET SIZE = A1

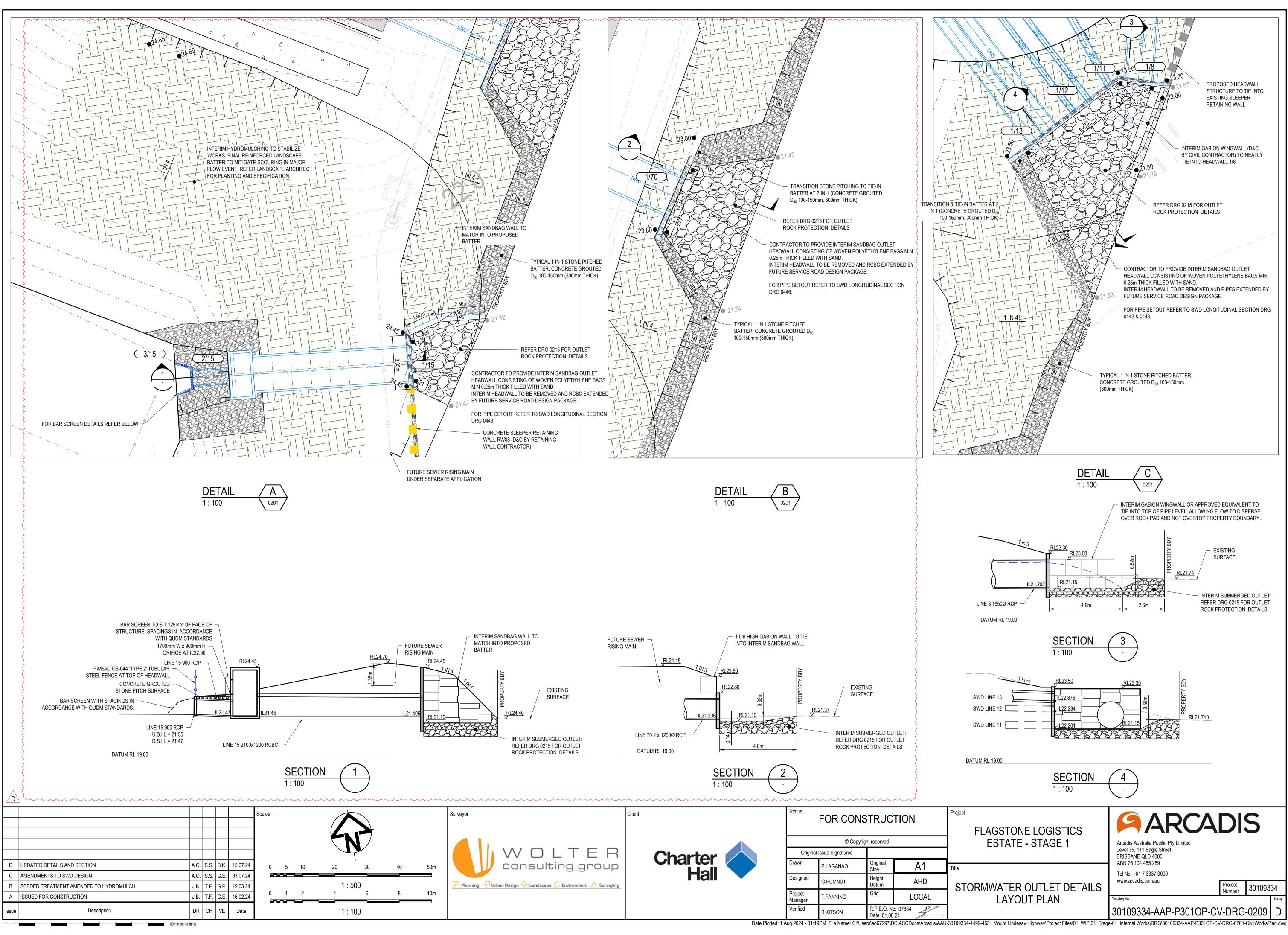


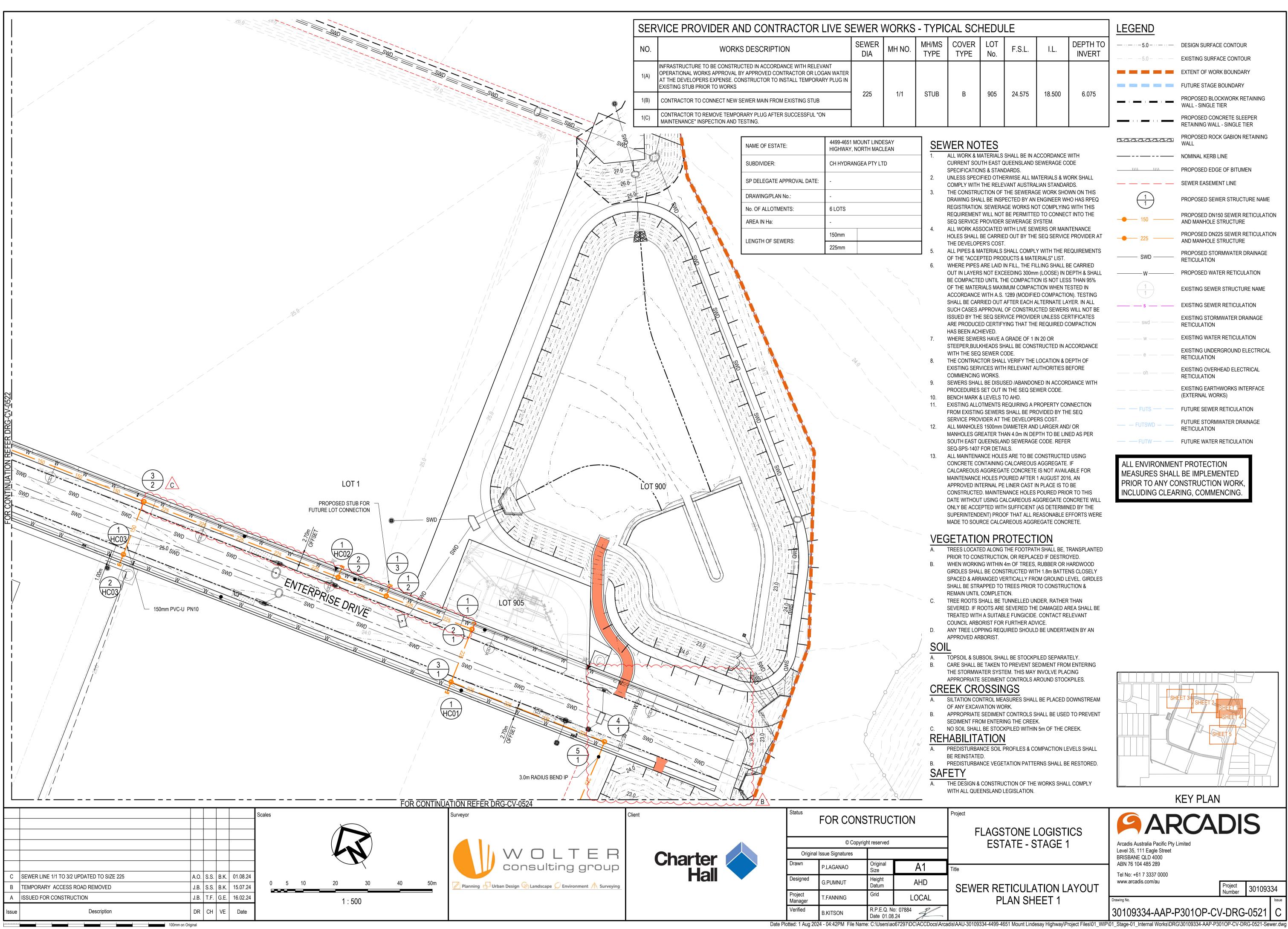
Appendix B – Arcadis IFC Documentation (Existing Estate Infrastructure)




	LEGEND	
	<u> </u>	DESIGN SURFACE CONTOUR
	<u> </u>	EXISTING SURFACE CONTOUR
		EXTENT OF WORK BOUNDARY
		FUTURE STAGE BOUNDARY PROPOSED BLOCKWORK RETAINING WALL -
		SINGLE TIER PROPOSED CONCRETE SLEEPER
	••••••••••••••••••••••••••••••••••••••	RETAINING WALL - SINGLE TIER
		EXISTING RETAINING WALL
	0.0.0.0.0.0.0.0	PROPOSED ROCK GABION RETAINING WALL
		PROPOSED BARRIER KERB & CHANNEL TYPE "B1" NOM. 450mm WIDE
State State		PROPOSED FLUSH EDGE RESTRAINT TYPE "ER2" NOM. 230mm WIDE
se - + swd		PROPOSED CHANNEL INVERT KERB NOM. 900mm WIDE
· · · · · · · · · · · · · · · · · · ·		PROPOSED EDGE OF BITUMEN
		ROAD PAVEMENT
		CONCRETE FOOTPATH
Sud -		HEAVY DUTY CONCRETE CROSSOVER
		(225mmDEPTH)
		HYDROMULCHING TREATMENT
SWALE TO BE STONE PITCHED AS VELOCITY EXCEEDS 1.5m/s		TEMPORARY TURNAROUND INFILL PAVEMENT
		HEAVY DUTY CONCRETE CROSSOVER / TRACK (175mm DEPTH)
		COMPACTED GRAVEL PAVEMENT TYPE 2.3 (MIN 150mm THICK UNLESS OTHERWISE SPECIFIED)
photometry production of the second sec	(1/A1)	PROPOSED STORMWATER DRAINAGE STRUCTURE NAME
	SWD	PROPOSED STORMWATER DRAINAGE RETICULATION
		PROPOSED STORMWATER DRAINAGE STRUCTURE
		PROPOSED BIOPOD
		PROPOSED LANDSCAPE POD
	S w	PROPOSED SEWER RETICULATION PROPOSED WATER RETICULATION
		POWERLINK EASEMENT
	(1/A1)	EXISTING STORMWATER DRAINAGE STRUCTURE NAME
	swd —	EXISTING STORMWATER DRAINAGE
		RETICULATION EXISTING STORMWATER DRAINAGE
		STRUCTURE EXISTING SEWER RETICULATION
	S S	EXISTING SEWER RETICULATION
-29.0	oh	EXISTING OVERHEAD ELECTRICAL RETICULATION
****************		FUTURE STORMWATER DRAINAGE
XOX XOX X	(<u>1/A1</u>)	STRUCTURE NAME
	<u> </u>	RETICULATION
		FUTURE STORMWATER DRAINAGE STRUCTURE
	— — FUTS — —	FUTURE SEWER RETICULATION
	— — FUTW — —	
SWD LINE 9B (Q3 MONTH BYPASS) CONTRACTOR TO INSTALL NO-RETURN VALVE TO SUIT PROPOSED 0.45m RCP	SH	SHEET 5 SHEET 2 SHEET 7 SHEET 6 SHEET 8
il and the second second		KEY PLAN
		RCADIS
FLAGSTONE LOGISTICS ESTATE - STAGE 1	Arcadis Australia Pacific Pty I Level 35, 111 Eagle Street BRISBANE QLD 4000	
	ABN 76 104 485 289 Tel No: +61 7 3337 0000	
ADWORKS AND DRAINAGE	Tel No: +61 7 3337 0000 www.arcadis.com/au Drawing No.	Project Number 30109334
SHEET 4	30109334-AAP-F	P3010P-CV-DRG-0204 D
499-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Stage	-01_Internal Works\DRG\301093	34-AAP-P3010P-CV-DRG-0201-CivilWorksPlan.dwg






	Client		Status	FOR CONS	STRUC	TION	Project
					ght reserved		
		Charter		I Issue Signatures			
consulting group		Hall	Drawn	P.LAGANAO	Original Size	A1	Title
ning 🗗 Urban Design 🌝 Landscape 💭 Environment 🅂 Surveying			Designed	G.PUMNUT	Height Datum	AHD	ROA
			Project Manager	T.FANNING	Grid	LOCAL	
			Verified	B.KITSON	R.P.E.Q. No Date 01.08		

FOR CONTINUATION REFER DRG-CV-0 PROPOSED 1.8m WIDE CONCRETE FOOTHPATH, REFER IPWEAQ STD. DWG. RS-065 FOR DETAILS. PROPOSED 6.0m WIDE HEAVY DUTY DRIVEWAY CROSS-OVERS IN ACCORDANCE WITH IPWEAQ RS-051. CONTRACTOR TO REFER TYPICAL ALLOTMENT DOWEL INTO EXISTING INTERNAL SPS DRIVEWAY WITH R24 GRATED PIT ON MANHOLE CONNECTION DETAIL ON DRG-0215. GALVANIZED, 400 LONG BARS @ 300 CRS AND EPOXY BONDED TYPICAL BOLLARDS TO DRAINAGE LOT ALONG ROAD **RESERVE - REFER LANDSCAPE ARCHITECT FOR DETAILS.** PROVIDE LOCKABLE GATE AT BOUNDARY IN ACCORDANCE WITH IPWEAQ GS-043 LOCALLY GRADE CHANNEL BASE AT MIN. 0.5% TO LOW FLOW INLET REFER TYPICAL ALLOTMENT GRATED PIT ON MANHOLE CONNECTION DETAIL ON DRG-0215. LOT 2 EXISTING 900mm CONCRETE INVERT CHANNEL LOT 2 FOR CONTINUATION REFER DRG-CV-0208 Scales Surveyor D UPDATED LAYOUT, SWD LINE 15 UPDATED A.O. S.S. B.K. 15.07.24 0 5 10 20 30 40 50m A.O. S.S. G.E. 03.07.24 AMENDMENTS TO SWD DESIGN J.B. T.F. G.E. 19.03.24 SEEDED TREATMENT AMENDED TO HYDROMULCH 4 1:500 ₆ J.B. T.F. G.E. 16.02.24 0 1 2 10m ISSUED FOR CONSTRUCTION DR CH VE Date Description 1 : 100 100mm on Original

LOT No.	F.S.L.	I.L.	DEPTH TO INVERT
905	24.575	18.500	6.075

ALL WORK & MATERIALS SHALL BE IN ACCORDANCE WITH CURRENT SOUTH EAST QUEENSLAND SEWERAGE CODE

UNLESS SPECIFIED OTHERWISE ALL MATERIALS & WORK SHALL COMPLY WITH THE RELEVANT AUSTRALIAN STANDARDS.

THE CONSTRUCTION OF THE SEWERAGE WORK SHOWN ON THIS DRAWING SHALL BE INSPECTED BY AN ENGINEER WHO HAS RPEQ REGISTRATION. SEWERAGE WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT INTO THE SEQ SERVICE PROVIDER SEWERAGE SYSTEM.

ALL WORK ASSOCIATED WITH LIVE SEWERS OR MAINTENANCE HOLES SHALL BE CARRIED OUT BY THE SEQ SERVICE PROVIDER AT

ALL PIPES & MATERIALS SHALL COMPLY WITH THE REQUIREMENTS OF THE "ACCEPTED PRODUCTS & MATERIALS" LIST. WHERE PIPES ARE LAID IN FILL, THE FILLING SHALL BE CARRIED

OUT IN LAYERS NOT EXCEEDING 300mm (LOOSE) IN DEPTH & SHALL BE COMPACTED UNTIL THE COMPACTION IS NOT LESS THAN 95% OF THE MATERIALS MAXIMUM COMPACTION WHEN TESTED IN ACCORDANCE WITH A.S. 1289 (MODIFIED COMPACTION). TESTING

SHALL BE CARRIED OUT AFTER EACH ALTERNATE LAYER. IN ALL SUCH CASES APPROVAL OF CONSTRUCTED SEWERS WILL NOT BE ISSUED BY THE SEQ SERVICE PROVIDER UNLESS CERTIFICATES ARE PRODUCED CERTIFYING THAT THE REQUIRED COMPACTION

WHERE SEWERS HAVE A GRADE OF 1 IN 20 OR

STEEPER, BULKHEADS SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE SEQ SEWER CODE.

THE CONTRACTOR SHALL VERIFY THE LOCATION & DEPTH OF EXISTING SERVICES WITH RELEVANT AUTHORITIES BEFORE

SEWERS SHALL BE DISUSED /ABANDONED IN ACCORDANCE WITH PROCEDURES SET OUT IN THE SEQ SEWER CODE.

EXISTING ALLOTMENTS REQUIRING A PROPERTY CONNECTION FROM EXISTING SEWERS SHALL BE PROVIDED BY THE SEQ SERVICE PROVIDER AT THE DEVELOPERS COST.

12. ALL MANHOLES 1500mm DIAMETER AND LARGER AND/ OR MANHOLES GREATER THAN 4.0m IN DEPTH TO BE LINED AS PER SOUTH EAST QUEENSLAND SEWERAGE CODE. REFER

ALL MAINTENANCE HOLES ARE TO BE CONSTRUCTED USING CONCRETE CONTAINING CALCAREOUS AGGREGATE. IF CALCAREOUS AGGREGATE CONCRETE IS NOT AVAILABLE FOR

MAINTENANCE HOLES POURED AFTER 1 AUGUST 2016, AN APPROVED INTERNAL PE LINER CAST IN PLACE IS TO BE CONSTRUCTED. MAINTENANCE HOLES POURED PRIOR TO THIS DATE WITHOUT USING CALCAREOUS AGGREGATE CONCRETE WILL ONLY BE ACCEPTED WITH SUFFICIENT (AS DETERMINED BY THE SUPERINTENDENT) PROOF THAT ALL REASONABLE EFFORTS WERE

VEGETATION PROTECTION

A. TREES LOCATED ALONG THE FOOTPATH SHALL BE, TRANSPLANTED PRIOR TO CONSTRUCTION, OR REPLACED IF DESTROYED. WHEN WORKING WITHIN 4m OF TREES, RUBBER OR HARDWOOD

GIRDLES SHALL BE CONSTRUCTED WITH 1.8m BATTENS CLOSELY SPACED & ARRANGED VERTICALLY FROM GROUND LEVEL. GIRDLES SHALL BE STRAPPED TO TREES PRIOR TO CONSTRUCTION &

REMAIN UNTIL COMPLETION. TREE ROOTS SHALL BE TUNNELLED UNDER, RATHER THAN SEVERED. IF ROOTS ARE SEVERED THE DAMAGED AREA SHALL BE TREATED WITH A SUITABLE FUNGICIDE. CONTACT RELEVANT

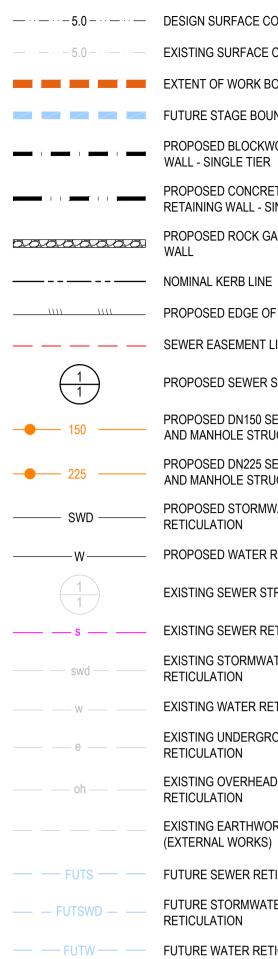
COUNCIL ARBORIST FOR FURTHER ADVICE. ANY TREE LOPPING REQUIRED SHOULD BE UNDERTAKEN BY AN

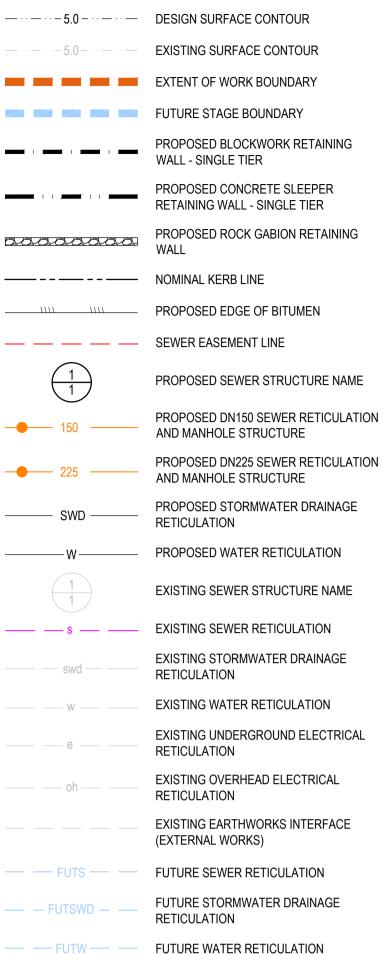
A. TOPSOIL & SUBSOIL SHALL BE STOCKPILED SEPARATELY. B. CARE SHALL BE TAKEN TO PREVENT SEDIMENT FROM ENTERING THE STORMWATER SYSTEM. THIS MAY INVOLVE PLACING

APPROPRIATE SEDIMENT CONTROLS AROUND STOCKPILES.

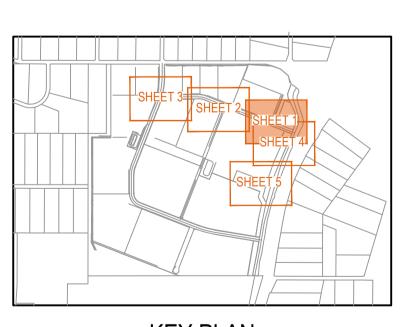
A. SILTATION CONTROL MEASURES SHALL BE PLACED DOWNSTREAM OF ANY EXCAVATION WORK.

APPROPRIATE SEDIMENT CONTROLS SHALL BE USED TO PREVENT SEDIMENT FROM ENTERING THE CREEK. C. NO SOIL SHALL BE STOCKPILED WITHIN 5m OF THE CREEK.


A. PREDISTURBANCE SOIL PROFILES & COMPACTION LEVELS SHALL B. PREDISTURBANCE VEGETATION PATTERNS SHALL BE RESTORED.

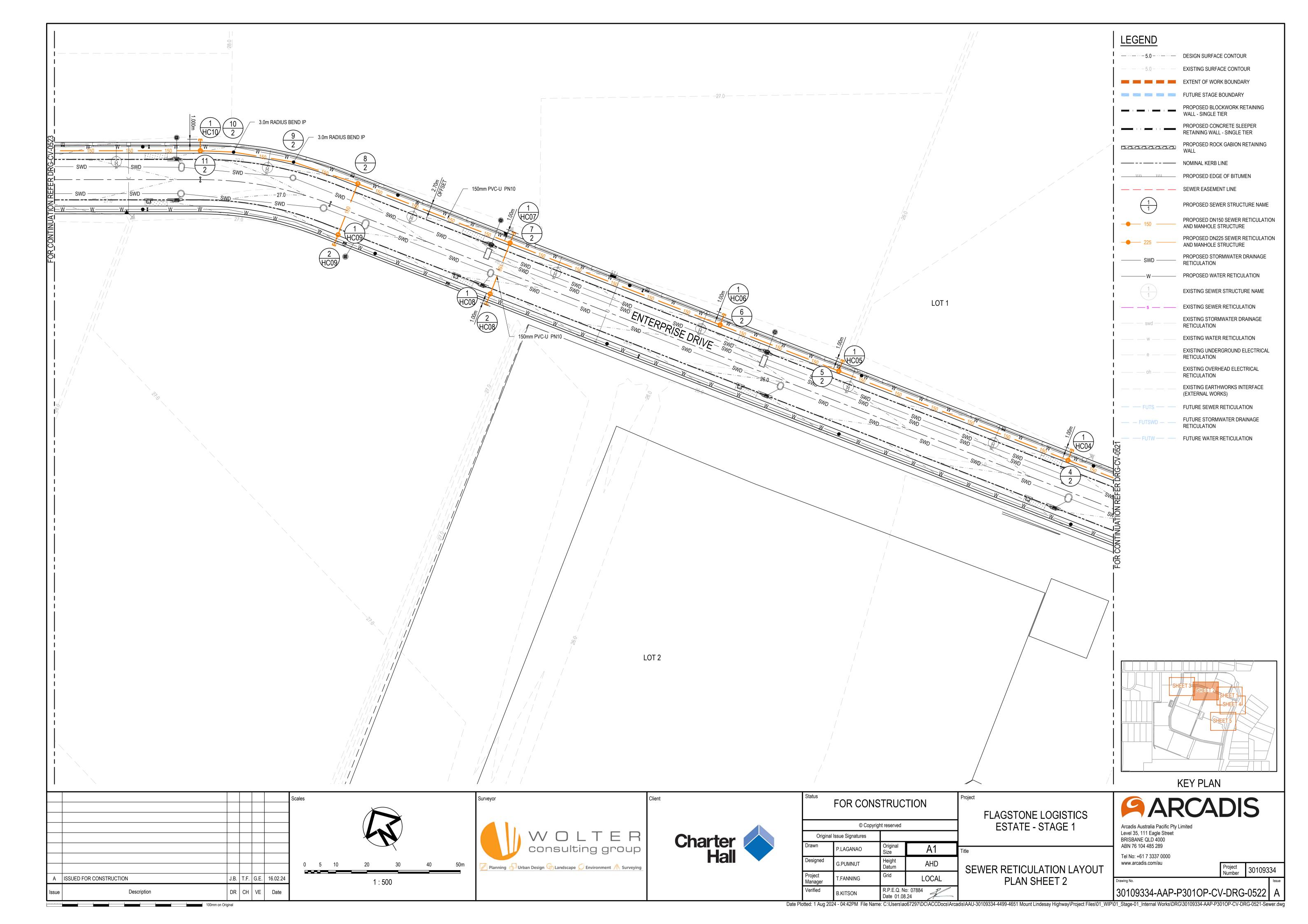

WITH ALL QUEENSLAND LEGISLATION.

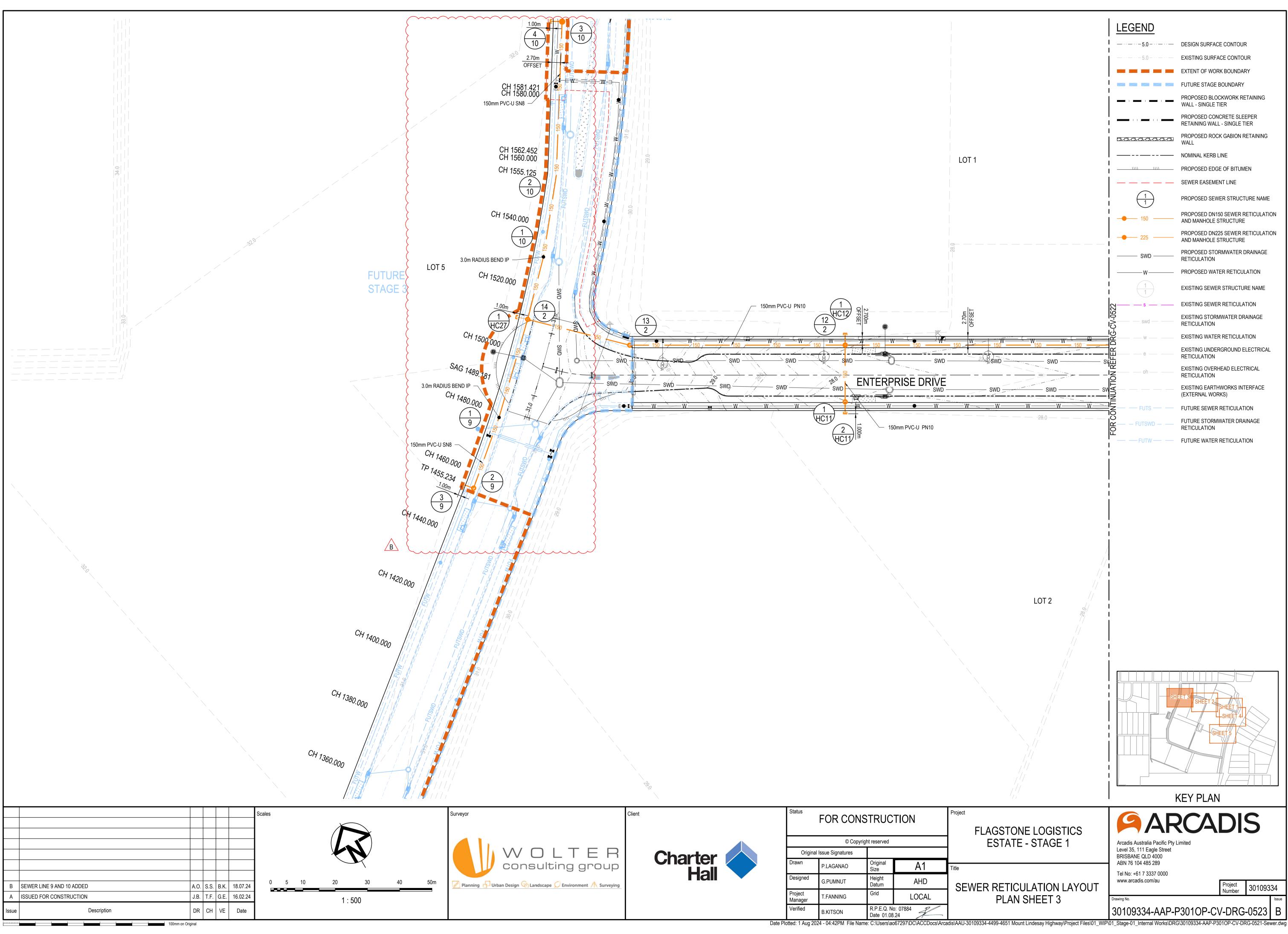
FLAGSTONE LOGISTICS ESTATE - STAGE 1

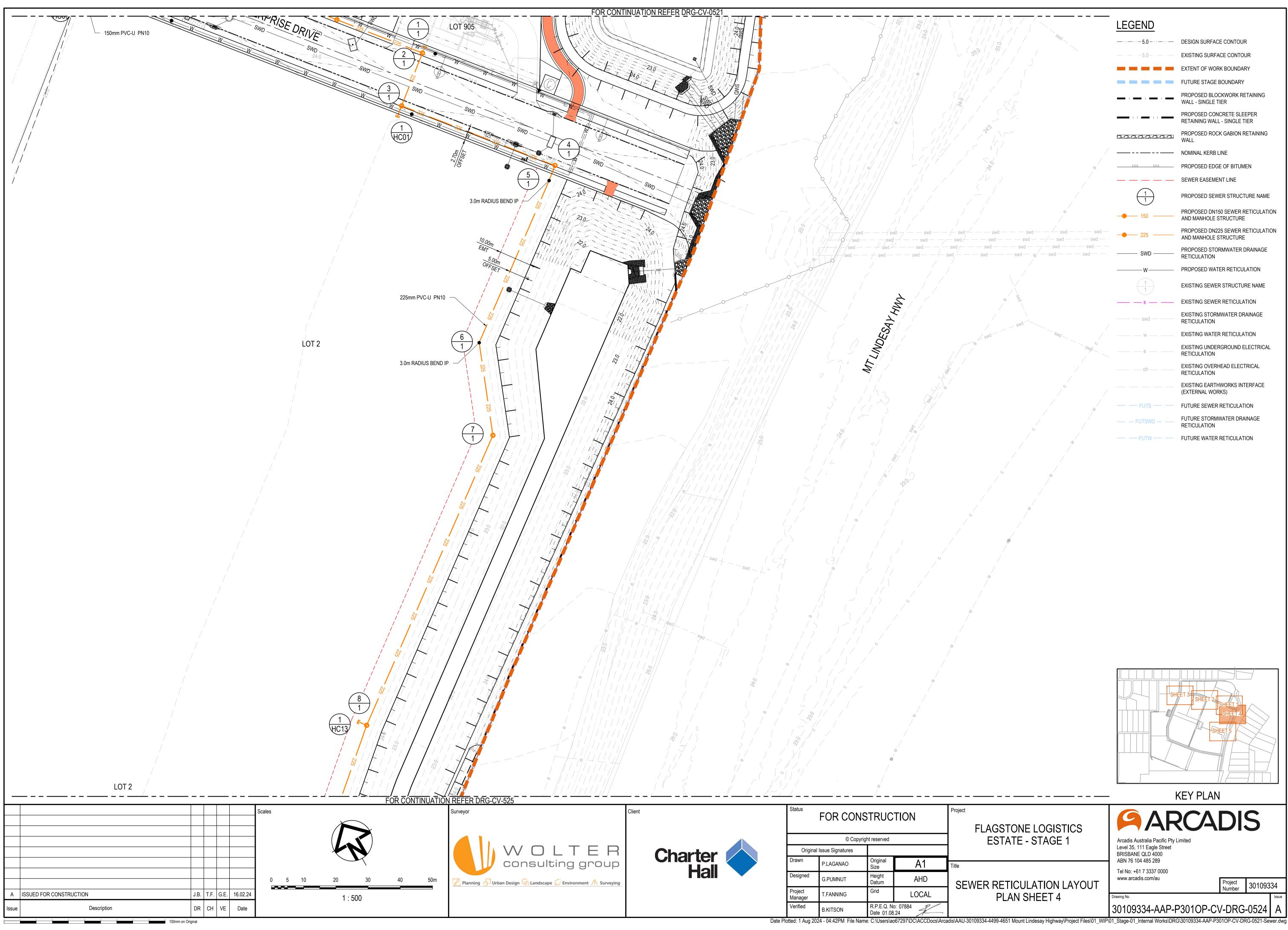

SEWER RETICULATION LAYOUT PLAN SHEET 1

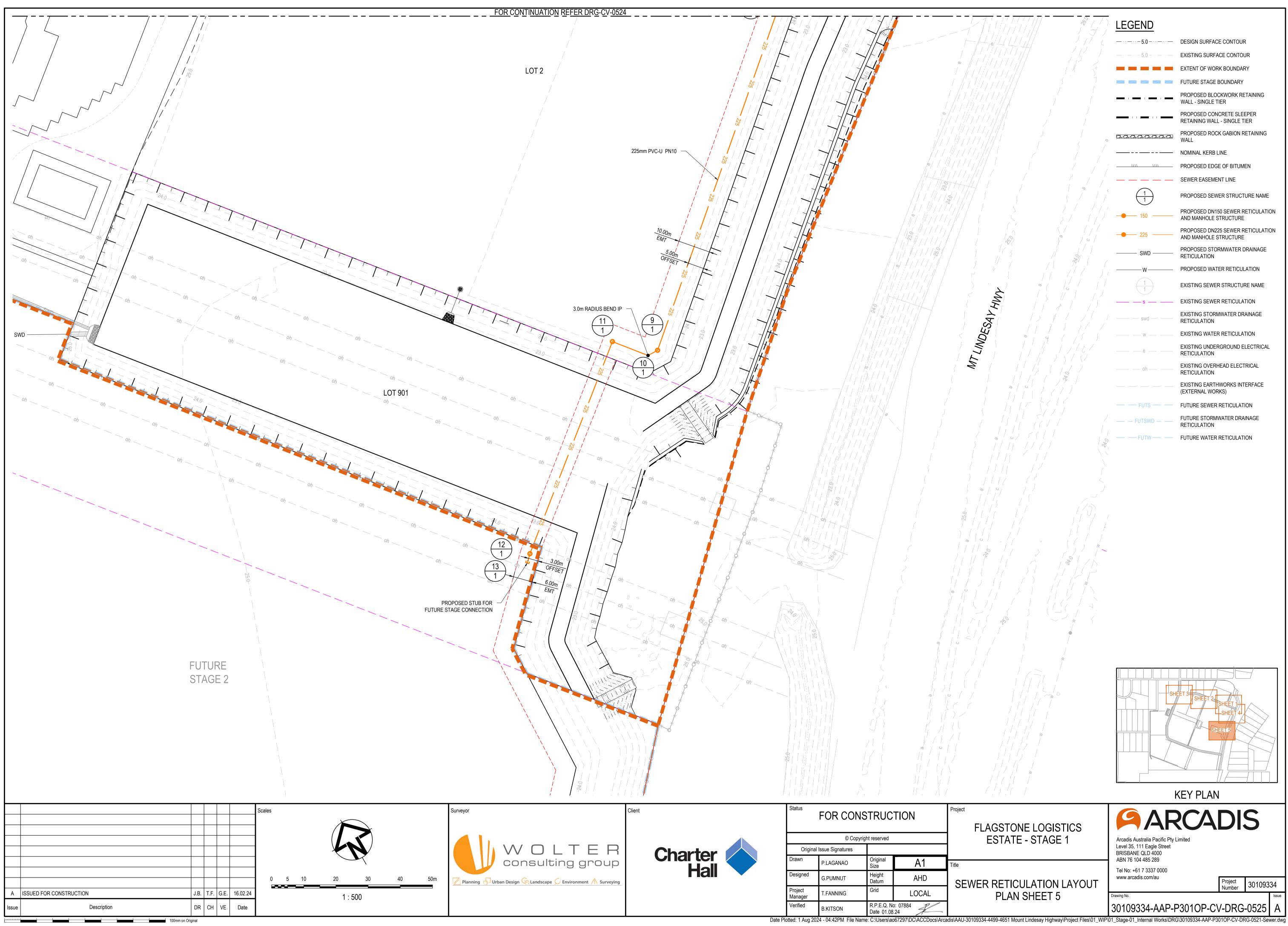
LEGEND

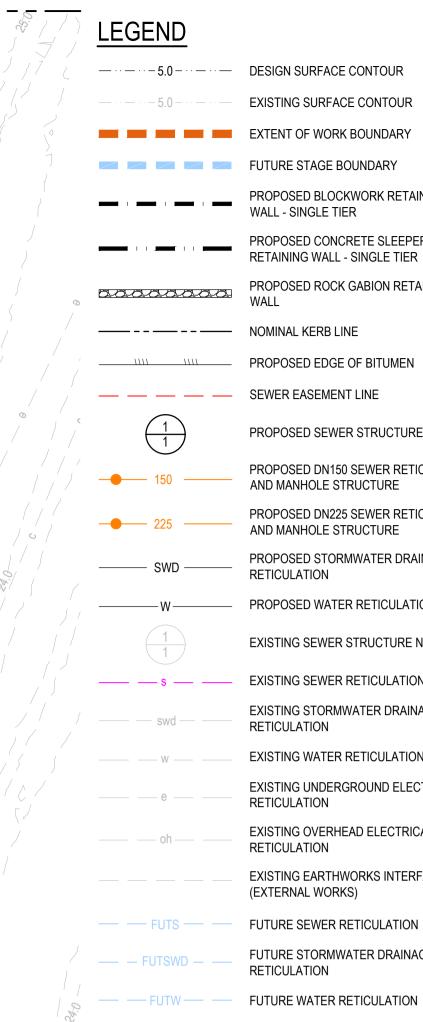
ALL ENVIRONMENT PROTECTION MEASURES SHALL BE IMPLEMENTED PRIOR TO ANY CONSTRUCTION WORK, INCLUDING CLEARING, COMMENCING.

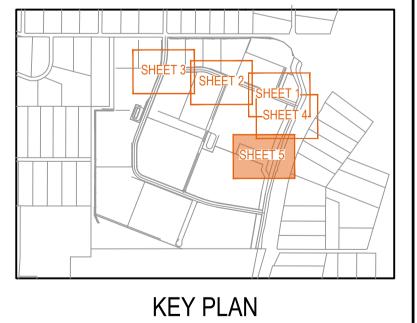

KEY PLAN


ARCADIS Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289 Tel No: +61 7 3337 0000


www.arcadis.com/au


Project Number 30109334

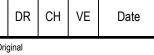

30109334-AAP-P3010P-CV-DRG-0521



DESIGN SURFACE CONTOUR
EXISTING SURFACE CONTOUR
EXTENT OF WORK BOUNDARY
FUTURE STAGE BOUNDARY
PROPOSED BLOCKWORK RETAINING WALL - SINGLE TIER
PROPOSED CONCRETE SLEEPER RETAINING WALL - SINGLE TIER
PROPOSED ROCK GABION RETAINING WALL
NOMINAL KERB LINE
PROPOSED EDGE OF BITUMEN
SEWER EASEMENT LINE
PROPOSED SEWER STRUCTURE NAME
PROPOSED DN150 SEWER RETICULATION AND MANHOLE STRUCTURE
PROPOSED DN225 SEWER RETICULATION AND MANHOLE STRUCTURE
PROPOSED STORMWATER DRAINAGE RETICULATION
PROPOSED WATER RETICULATION
EXISTING SEWER STRUCTURE NAME
EXISTING SEWER RETICULATION
EXISTING STORMWATER DRAINAGE RETICULATION
EXISTING WATER RETICULATION
EXISTING UNDERGROUND ELECTRICAL RETICULATION
EXISTING OVERHEAD ELECTRICAL RETICULATION
EXISTING EARTHWORKS INTERFACE (EXTERNAL WORKS)
FUTURE SEWER RETICULATION
FUTURE STORMWATER DRAINAGE RETICULATION

FLAGSTONE LOGISTICS ESTATE - STAGE 1

SEWER RETICULATION LAYOUT PLAN SHEET 5

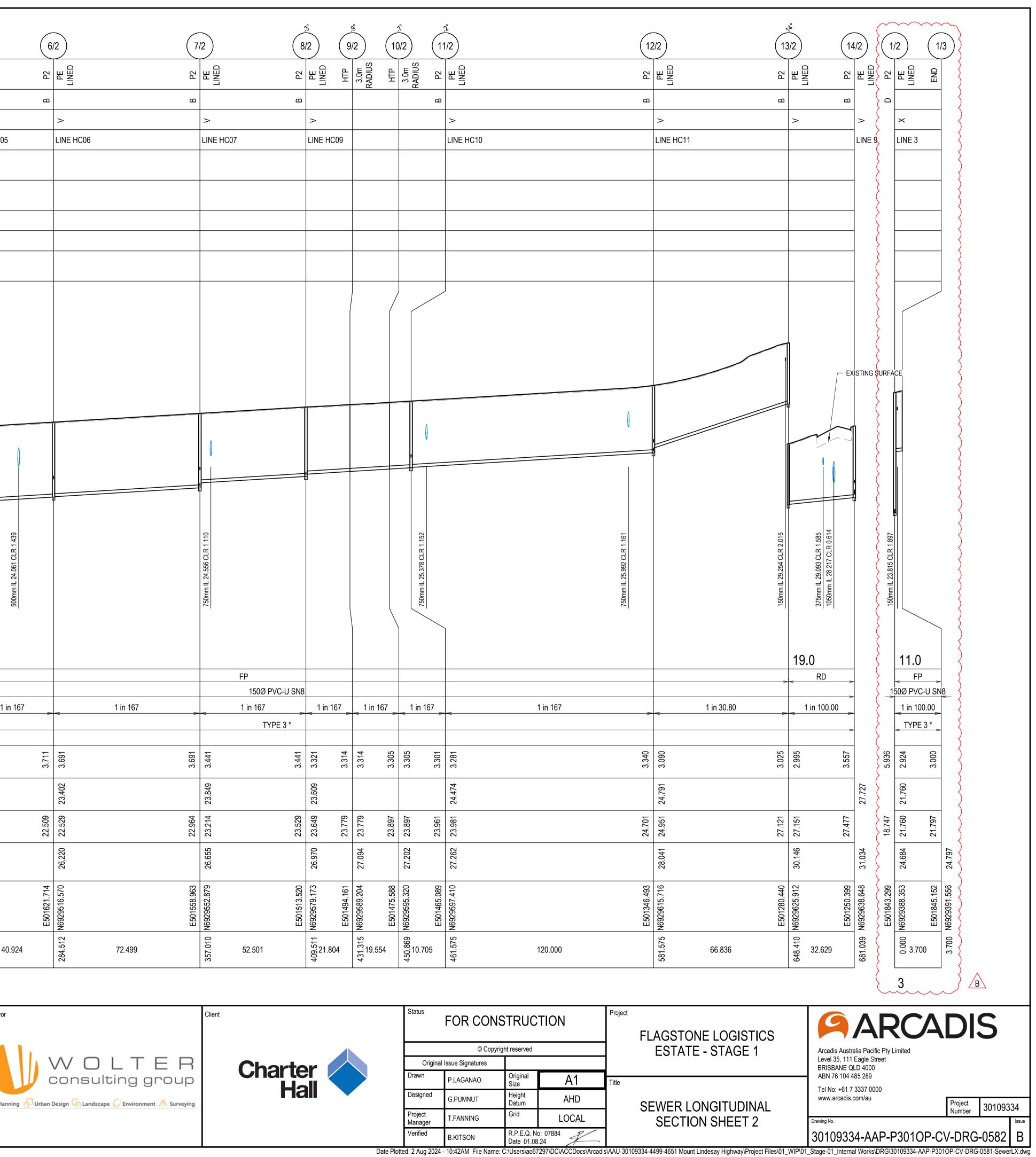

ARCADIS Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289 Tel No: +61 7 3337 0000 www.arcadis.com/au awing No.

30109334-AAP-P301OP-CV-DRG-0525

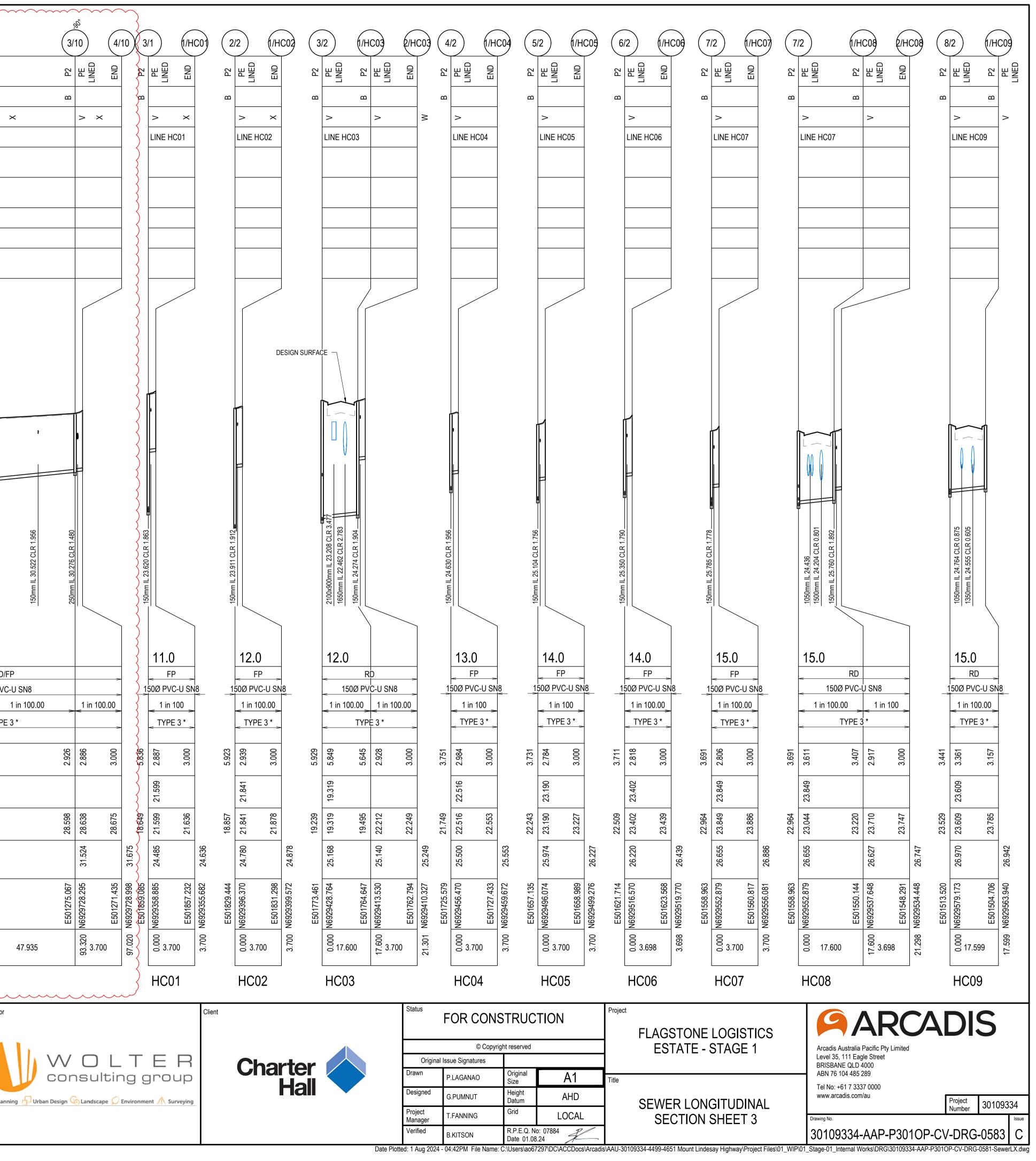
Project Number 30109334

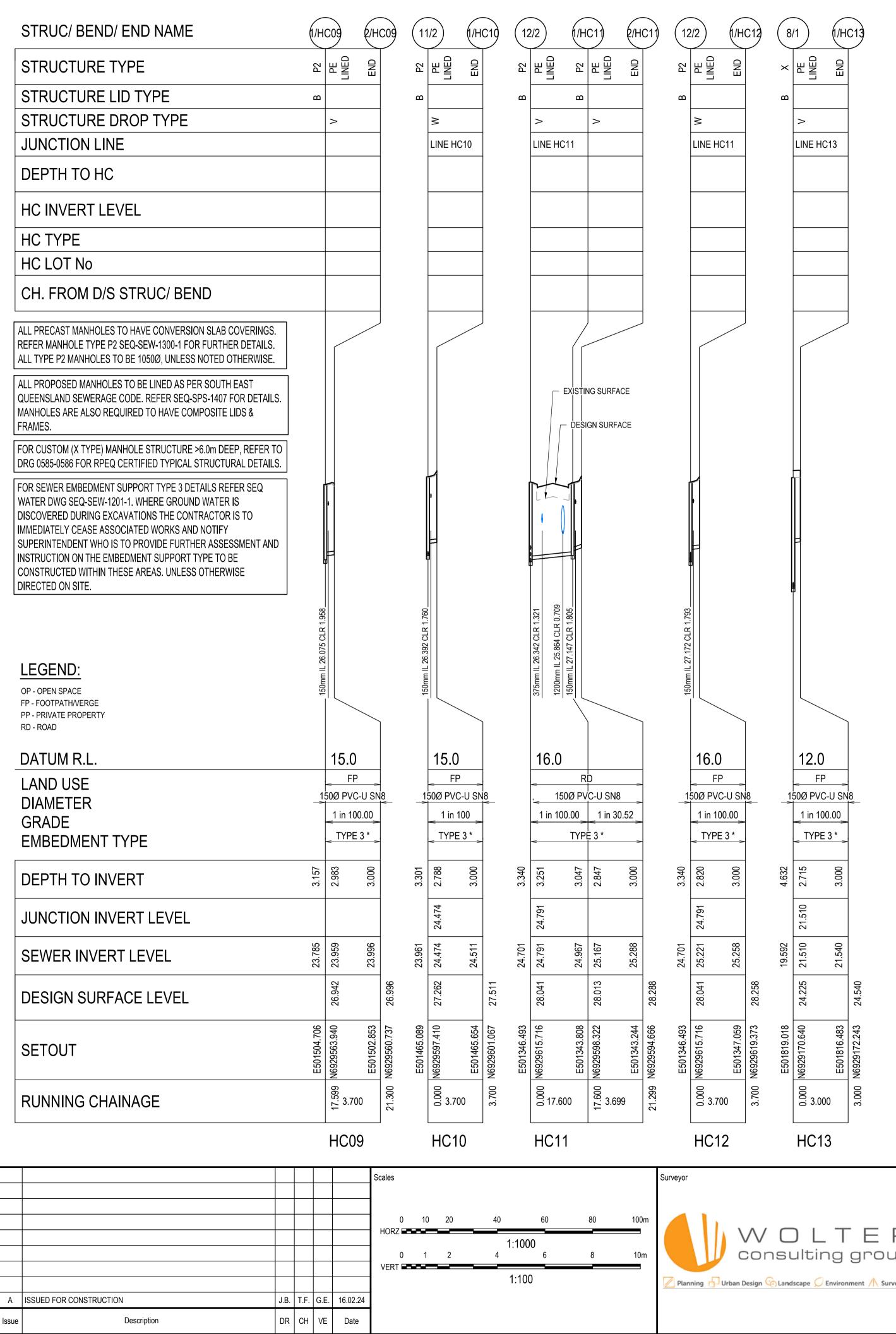
STRUC/ BEND/ END NAME	(1/1)	(2/1		<u>چې</u> 1) (<u>م</u> م 4/1	(5/1)		6/1	م د (7/1				8/1				9/1	(10/1) (·	,,s ⁶ 11/1	(.	[%] 12/1
STRUCTURE TYPE	SIGN	× 12	P2 NED	LINED	PE LINED	HTP 3.0m RADIUS		HTP 3.0m RADIUS	׼				X ED				PE LINED	30m				LINED
STRUCTURE LID TYPE	SPS DE	В	<u></u> В		<u></u> в	<u>- Ra</u>		<u>+ 88</u>	۵				В				8	e.	<u>в</u>		۵	
STRUCTURE DROP TYPE		2	>	>	>				:	>			>				>			>		>
JUNCTION LINE	C	L	INE 2										LINE HC13	•								
DEPTH TO HC																						
HC INVERT LEVEL																						
HC TYPE																						
HC LOT No																						
CH. FROM D/S STRUC/ BEND																						
ALL PRECAST MANHOLES TO HAVE CONVERSION SLAB COVERINGS. REFER MANHOLE TYPE P2 SEQ-SEW-1300-1 FOR FURTHER DETAILS. ALL TYPE P2 MANHOLES TO BE 1050Ø, UNLESS NOTED OTHERWISE.]						SUBJECT TO SEPAF	E WITHIN PRIVATE _									<u>}</u>		
ALL PROPOSED MANHOLES TO BE LINED AS PER SOUTH EAST QUEENSLAND SEWERAGE CODE. REFER SEQ-SPS-1407 FOR DETAILS. MANHOLES ARE ALSO REQUIRED TO HAVE COMPOSITE LIDS & FRAMES.										EXISTI	NG SURFACE										,	
FOR CUSTOM (X TYPE) MANHOLE STRUCTURE >6.0m DEEP, REFER TO DRG 0585-0586 FOR RPEQ CERTIFIED TYPICAL STRUCTURAL DETAILS. FOR SEWER EMBEDMENT SUPPORT TYPE 3 DETAILS REFER SEQ WATER DWG SEQ-SEW-1201-1. WHERE GROUND WATER IS																						
DISCOVERED DURING EXCAVATIONS THE CONTRACTOR IS TO IMMEDIATELY CEASE ASSOCIATED WORKS AND NOTIFY SUPERINTENDENT WHO IS TO PROVIDE FURTHER ASSESSMENT AND INSTRUCTION ON THE EMBEDMENT SUPPORT TYPE TO BE CONSTRUCTED WITHIN THESE AREAS. UNLESS OTHERWISE				V									0 									
DIRECTED ON SITE.	LR 4.840			i.R 2.592	LR 4.281													TEN		END CAP FOR STAGE CONI		
LEGEND: OP - OPEN SPACE FP - FOOTPATH/VERGE PP - PRIVATE PROPERTY RD - ROAD	150mm IL 23.644 (1650mm IL 21.782			600mm IL 21.682 C	150mm IL 23.417 C														F	FUTURE STAG	∋e 2 Sewer —∕	
DATUM R.L.	11.0)																				
LAND USE		RD	>	<	FP	><						205.0		PP								
DIAMETER GRADE	_ <u>300Ø PV(</u> 1 in 2	V	1 in 286	1 in 286	1 in 28	6	1 in 286	1 ir	n 286		1 in 286	2250	PVC-U SN8	1	in 286		1 in 2	286	1 in 286		1 in 286	1 in
EMBEDMENT TYPE	<											TYPE 3 *	*									
DEPTH TO INVERT	6.075	6.005	5.925 5.836	5.796	5.398 5.358	5.368 5.368		5.128 5.128	4.987	/ c6.1			4.632 4.612				4.222	4.184 4.184	192	4.152	143	4.113
JUNCTION INVERT LEVEL			18.588						4	7			21.510 4				7 7					
SEWER INVERT LEVEL	18.500	18.508	18.588 18.649	18.689	18.868 18.908	18.926 18.926		19.117	19.219	19.249			19.592				20.005 20.035	20.047	20.077	20.128	20 376	20.406
DESIGN SURFACE LEVEL	24.575		24.513	24.485	24.266	24.294		24.245		24.206			24.225				24.227	020 10	000	24.280		24.518
SETOUT	E501869.082 N6929375.976	E501867.971	N6929374.077 E501859.085	N6929358.885	E501903.289 N6929333.305	E501900.786 N6929328.980		E501871.667 N6929282.606	E501871.468	00C.CC26260N			E501819.018 N6929170.640				E501765.972 N6929071.787	E501762.787	E501752 516	N6929076.607	ско1717 114	N6929015.433
RUNNING CHAINAGE	80 6: 2.20	00	8 27 17.600	6 51.071	128.02 128.02	75.868	54.758	130.626 52	0.039	159.665	98.123		257.787	1	12.186		369.974 33	77 77 77	11.867	385.218	70.680	455.897 .C
	1																					
		Scal	les					Su	irveyor				Client			Status	FOR	CONS	STRUC	CTION	Pr	roject F
		— но	0 10 ORZ		40	60	80	100m		\sim		ER		hortor		Origi	nal Issue Signa		ght reserved		———	
			0 1 ERT E	2	1:1000 4	U 6	8	10m		con	O L T sulting	group		harter Hall		Drawn	P.LAGAN		Original Size	<i>F</i>	\1 Tit	itle
					1:100)			Planning	Urban Design 🌀	Landscape 💭 Environr	nent 🗥 Surveying	_		•	Designed	G.PUMN		Height Datum Grid		HD	ç
ISSUED FOR CONSTRUCTION J.B.	T.F. G.E. 16.02	24														Project Manager Verified	T.FANNII	NG	Grid R.P.E.Q.		OCAL	

Issue	Description										
	100mm on Origi	inal									



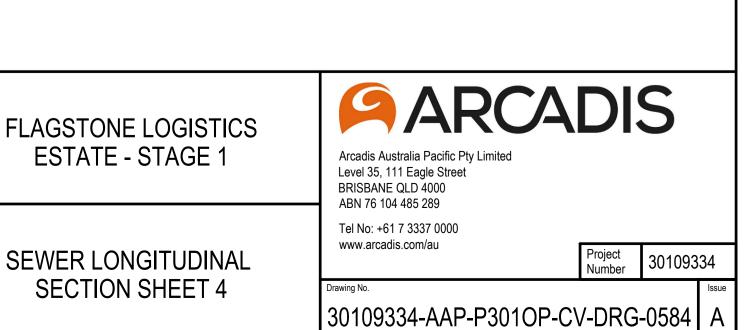
	8/1 < H G	9/1 (10/ 10/ 24 H		(12/1) (13/1) ⁵ ⁶ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹		
			B RAC			
- - > -	LINE HC13	>	>		> >	> > LINE HC03
INDICATIVE FINISH SURFACE WITHIN PRIVATE PERTY SUBJECT TO SEPARATE APPLICATION EXISTING SURFACE						
		Т	EMPORARY END CAP FOR FUTURE		22.794 CLR 3.728	0
					2400x900mm IL	
	PP				12.0	FP
225Ø PVC- 1 in 286		1 in 286	1 in 286 1 in 286	1 in 286	225Ø 1 in 179 1 in 179	0 PVC-U SN8
TYPE 3 *	><	> 1 111 200 >	<	>< 1 III 200 >< >>	< >< >	> <> TYPE 3 *>
4.957	4.612	4.222 4.192 4.184	4.184 4.192 4.152	4.143 4.113 4.107	6.005 5.925 5.936 5.916 5.923	5.903
	21.510			20.416	18.588 21.747	19.319
19.219 19.249 19.592	19.612	20.005 20.035 20.047	20.047 20.088 20.128	20.376 20.406 20.416	18.508 18.588 18.747 18.767 18.857	19.239
24.206	24.225	24.227	24.230 24.280	24.518 24.524	24.513 24.684	24.780 25.168
E501871.468 N6929253.568 F501819.018	N6929170.640	E501765.972 N6929071.787 E501762.787	N6929070.663 E501752.516 N6929076.607	E501717.114 N6929015.433 E501715.883 N6929012.697	E501867.971 N6929374.077 E501843.299 N6929388.353 E501829.444	E501773.461 N6929396.370 N6929428.764
98.123	Z8Z.787 115.186	726.698 8.377	373.351 385.218 385.218 20.080	455.897 000°E 458.898	80.000 28.505 82.16.007	44.512 109.191
					2	
Clie	ent	Status FOR CON	ISTRUCTION	Project FLAGST(ONE LOGISTICS	ARCADIS
WOLTER consulting group	Charter	Original Issue Signatures	vright reserved	ESTAT	TE - STAGE 1	Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289
CONSULTING GROUP	Charter Hall	Designed G.PUMNUT	Original Size A1 Height Datum AHD		ONGITUDINAL	Tel No: +61 7 3337 0000 www.arcadis.com/au Project Number 30109334
		Project Manager T.FANNING Verified B.KITSON	R.P.E.Q. No: 07884 Date 01.08.24		ON SHEET 1	Drawing No. 30109334-AAP-P3010P-CV-DRG-0581 A

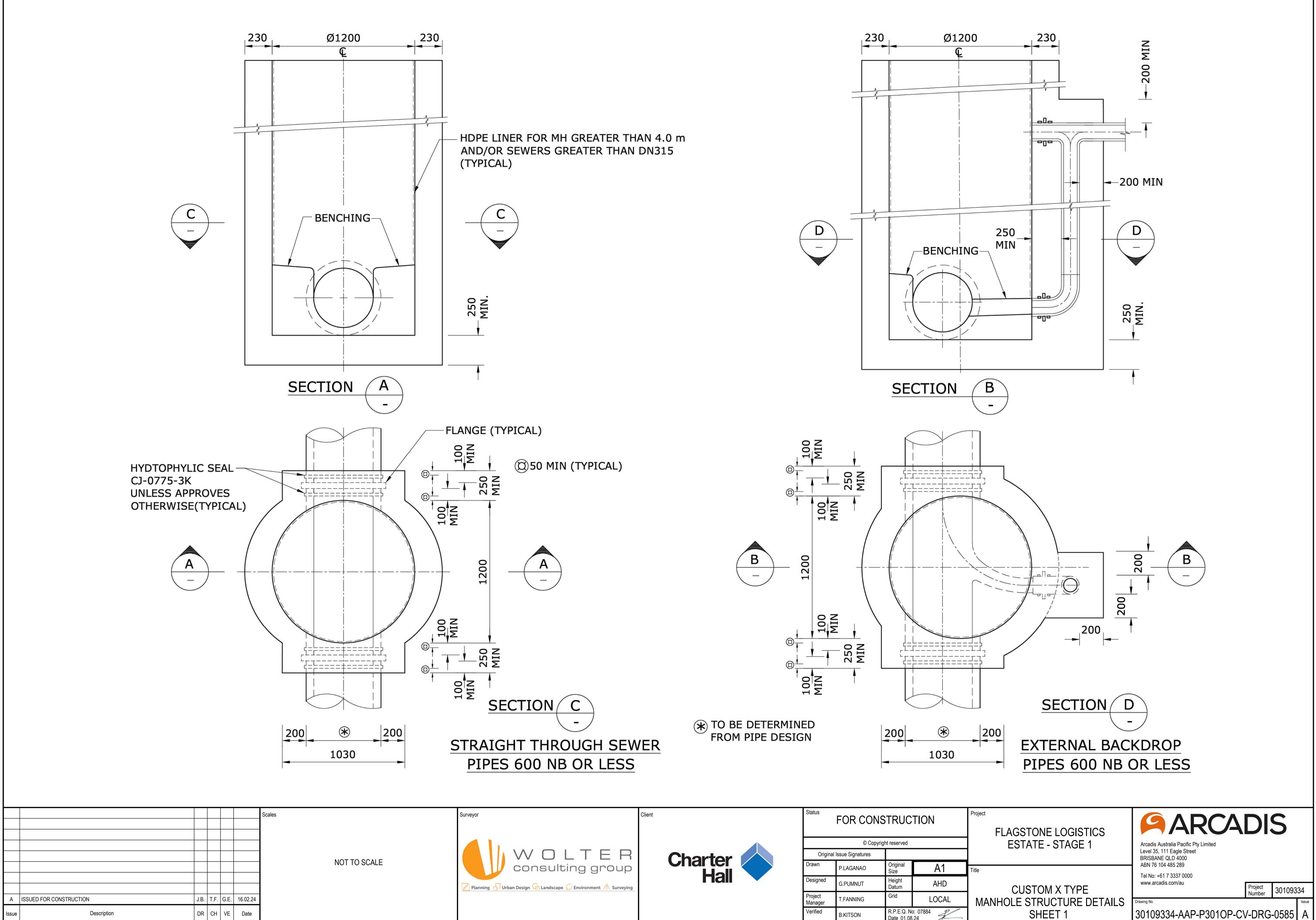

Date Plotted: 1 Aug 2024 - 04:42PM File Name: C:\Users\ao67297\DC\ACCDocs\Arcadis\AAU-30109334-4499-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Stage-01_Internal Works\DRG\30109334-AAP-P301OP-CV-DRG-0581-SewerLX.dwg


STRUCTURE TYPE a a a b a	STRUC/ BEND/ END NAME	(3/2)		(4/2			(5/2		(6/2			//2			9/2	(10/2)	(11/2)		
STRUCTURE LUD TYPE •	STRUCTURE TYPE	P2 PE LINED		P2	LINED		P2	LINED	P2	LINED	5	PE	P2	PE LINED	3.0m RADIUS	HTP 3.0m			
LUCION LUE 041-36 041	STRUCTURE LID TYPE	۵		В			В		В		۵		В						
DEPRH TO HC Image: Second		×			>			>		>		>		>			>		
HC NMERT LEVEL HC 10T NE HC 10T	JUNCTION LINE	LINE HC)3	l	LINE HC04			LINE HC05	L	LINE HC06		LINE HC	07	LINE HC09			LINE HC10		
HC TYPE HC LOT NA HC LOT N	DEPTH TO HC																		
HC LOT No CH. FROM DES STRUCT BADINO CH. FROM DES STRUCT	HC INVERT LEVEL																		
CH - FROM DIS STRUC: BEND A RECOMMENS IN RECOMMENS IN RECOMMENS A RECOMMENS IN RECOMMENS IN RECOMMENS A RECOMMENS IN RECOMMENS IN RECOMMENS A RECOMMENS IN RECOMMENS A RECOMMENS IN RECOMMENS A RECOMMENS A RECOMM	HC TYPE																		
Line of the second seco	HC LOT No																		
USE AVELUE VERVEUX SAULTS ENTITION OF INFORMATIONS Information Sub-Laboration of the state of t	CH. FROM D/S STRUC/ BEND																		
Description Provide and an an and an an and an an and an an and an an and an an and an an and an an an and an an an and an	REFER MANHOLE TYPE P2 SEQ-SEW-1300-1 FOR FURTHER DETAILS. ALL TYPE P2 MANHOLES TO BE 1050Ø, UNLESS NOTED OTHERWISE. ALL PROPOSED MANHOLES TO BE LINED AS PER SOUTH EAST QUEENSLAND SEWERAGE CODE. REFER SEQ-SPS-1407 FOR DETAILS. MANHOLES ARE ALSO REQUIRED TO HAVE COMPOSITE LIDS &																		
Mark 2006 SERVERUS (1) WEST SUBJONATES 6 DECENCE 2006 CONTROL OS IE CON	OR CUSTOM (X TYPE) MANHOLE STRUCTURE >6.0m DEEP, REFER TO					DESIGN SURFACE													
LEGGEND: In - model DREDUCE DAVISION FUNCTION OF A DIAL FUNCTION O												٨					(V
LIGGEND:	ISCOVERED DURING EXCAVATIONS THE CONTRACTOR IS TO							Q								0			
LEGEND: Integration with these sets bulkess threader with the set sets bulkess threader threader bulket ter sets bulket ter bulket ter bulk	UPERINTENDENT WHO IS TO PROVIDE FURTHER ASSESSMENT AND						0		0										
LEGEND: or offension of other states of	CONSTRUCTED WITHIN THESE AREAS. UNLESS OTHERWISE																		
Operations Image: Note of the second se								139				110					152		161
Operation and the provision set in the provising set in the provision set in the provision set in the provision		ė						1 CLR 1.4				S CLR 1.					3 CLR 1.		2 CLR 1.
Operations Image: Note of the second se	I FGEND:	μ						IL 24.06				IL 24.556					IL 25.37		IL 25.992
LAND USE DIAMETER GRADE GRADE EMBEDMENT TYPE Image Image <thimage< th=""> Image Image<!--</td--><td>OP - OPEN SPACE FP - FOOTPATH/VERGE PP - PRIVATE PROPERTY</td><td></td><td></td><td></td><td></td><td></td><td></td><td>mm000</td><td></td><td></td><td></td><td>750mm</td><td></td><td></td><td></td><td></td><td>750mm</td><td></td><td>750mm</td></thimage<>	OP - OPEN SPACE FP - FOOTPATH/VERGE PP - PRIVATE PROPERTY							mm000				750mm					750mm		750mm
LAND OSE GRADE GRADE EMBEDIMENT TYPE Image	DATUM R.L.	14.0																	
Diametries GRADE EMBEDMENT TYPE 1 in 167 1 in 167 <t< td=""><td></td><td><</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		<																	
EMBEDMENT TYPE Image: set of type of typ		<	1 in 167	>	<	1 in 167	>	< 1 in 167	>	< 1 in 167	>	<			1 in 1	67 _ 1	in 167	1 in 167	
Inscription Inscription Inscription Inscription Inscription Inscription Inscription Inscription Inscription Inscrintermedintermedintermediatermedintermedintermediaterm		<											TYPE 3 *						
SEMEL INVELTING 25.00 25.00 27.140 19.23 N9829456.014 25.00 27.140 22.543 19.23 N8829456.173 25.00 27.140 25.50 27.140 N8829456.174 25.50 27.140 25.50 27.140 N8829456.174 25.50 27.140 27.543 27.140 N8829456.174 25.50 27.140 27.543 27.141 N8829456.174 25.50 27.147 27.543 27.141 N8829456.174 25.50 27.147 27.543 27.141 N882955.879 25.50 27.147 27.543 27.141 N882955.879 25.50 27.253 27.743 27.141 N882955.879 27.263 27.263 27.141 27.141 N882955.879 27.263 27.263 27.263 27.141 N882955.879 27.263 27.263 27.263 27.263 N882955.879 27.263 27.263 27.263 27.263 N8829557.91	DEPTH TO INVERT	5.929 3.751		3.751	3.731		3.731	3.711	3.711	3.691	3.691	3.441	3.441	3.321	3.314	3.305 3.305	3.301		
E501773.461 E501773.461 Tanana N6929456.071 25.50 25.50 N6929456.071 25.50 25.50 N6929553.173 26.20 25.50 N6929553.173 25.50 25.50 N6929553.20 27.034 27.034 N6929553.20 27.202 27.202	JUNCTION INVERT LEVEL	19.319			22.516					3.4		23.849		23.609			24.474		
E501657.135 N692956.370 N69295632.879	SEWER INVERT LEVEL	19.239 21.417		21.749	21.769		22.243	22.263	22.509	22.529	22.964	23.214	23.529	23.649	23.779	23.897 23.897	23.961 23.981		
	DESIGN SURFACE LEVEL	<u> </u>						25.974		26.220				26.970	27.094	27.202	27.262		
	SETOUT	01773.461 929428.764		725.	156.		01657.135	329496.074	01621.714)29516.570	20.00	22.	01513.520	329579.173	01434.101 029589.204	601475.588 329595.320	01465.089 29597.410		
	RUNNING CHAINAGE	9.191	55.320		512	79.076		2288		 [_] [_] [_] [_] [_] [_] [_]		010		115.01 15.01				120.000	

						Scales Surveyo
						0 10 20 40 60 80 100m
						HORZ
						0 1 2 4 6 8 10m
В	LINE 3 REVISED	A.O.	S.S.	B.K.	01.08.24	1:100 🗾 Pta
А	ISSUED FOR CONSTRUCTION	J.B.	T.F.	G.E.	16.02.24	
Issue	Description	DR	СН	VE	Date	
	100mm on Or	iginal				

		$\left(\right)$	~	~~~~		~~~~~ ×		<u></u>	~	~		<u>~</u>	°°	
STRUC/ BEND/ END NAME	(14/	2		/9	(2/	/9) (3	3/9) (14	4/2 (1/		2/10
STRUCTURE TYPE		6	2	LINED	НТР	3.0m RADIUS	P2	PE LINED END		P2	PE	НТР	3.0m RADIUS	LINED
STRUCTURE LID TYPE			<u> </u>				В			В				מ
STRUCTURE DROP TYPE		<u>}</u>	_	×		×	<	>	_			×		>
				LINE 9					_		LINE 9			
DEPTH TO HC		<u>}</u>												
HC INVERT LEVEL														
HC TYPE														
HC LOT No		<u>}</u>							-					
CH. FROM D/S STRUC/ BEND		<u> </u>							_					
ALL PRECAST MANHOLES TO HAVE CONVERSION SLAB COVERINGS. REFER MANHOLE TYPE P2 SEQ-SEW-1300-1 FOR FURTHER DETAILS. ALL TYPE P2 MANHOLES TO BE 1050Ø, UNLESS NOTED OTHERWISE.	(
ALL PROPOSED MANHOLES TO BE LINED AS PER SOUTH EAST QUEENSLAND SEWERAGE CODE. REFER SEQ-SPS-1407 FOR DETAILS. MANHOLES ARE ALSO REQUIRED TO HAVE COMPOSITE LIDS & FRAMES.														
FOR CUSTOM (X TYPE) MANHOLE STRUCTURE >6.0m DEEP, REFER TO DRG 0585-0586 FOR RPEQ CERTIFIED TYPICAL STRUCTURAL DETAILS.		$\left\{ \right\}$												
FOR SEWER EMBEDMENT SUPPORT TYPE 3 DETAILS REFER SEQ WATER DWG SEQ-SEW-1201-1. WHERE GROUND WATER IS DISCOVERED DURING EXCAVATIONS THE CONTRACTOR IS TO IMMEDIATELY CEASE ASSOCIATED WORKS AND NOTIFY SUPERINTENDENT WHO IS TO PROVIDE FURTHER ASSESSMENT AND INSTRUCTION ON THE EMBEDMENT SUPPORT TYPE TO BE CONSTRUCTED WITHIN THESE AREAS. UNLESS OTHERWISE DIRECTED ON SITE.						•								
LEGEND: OP - OPEN SPACE FP - FOOTPATH/VERGE PP - PRIVATE PROPERTY RD - ROAD	(750mm IL 28.518 CLR 0.472		750mm IL 28.732 CLR 0.452 150mm IL 30.163 CLR 1.914	250mm IL 29.920 CLR 1.375							
DATUM R.L.	I	<pre>}</pre>		19.0							19.0			
LAND USE		{		5	150	RD/FP Ø PVC-U S			×		<			RD/F
DIAMETER GRADE	(1 in 100 		1 in 100		1 in 100.00			1 in 100.0	20	_1 in 100.00	
EMBEDMENT TYPE		$\left\{ \right\}$		-		TYPE 3 *			•		<			TYPE
DEPTH TO INVERT		3 557	00.0	3.307	3.007	3.007	2.873	2.763 3.000		3.557	3.399	3.333	3.333	3.126
JUNCTION INVERT LEVEL	(>		27.727					_		27.727			
			+		4	4	7	57 24	_	7		35	22	<u>ი</u> ი
SEWER INVERT LEVEL		77 477	1.17	27.727	28.044	28.044	28.277	28.387 28.424 28.424		27.477	27.635	27.835	27.835	
DESIGN SURFACE LEVEL	(31.034		31.051		31.150	31.424		31.034		31.168	31.245
SETOUT	(EE012E0 200		N6929638.648	E501236.991	N6929609.933	E501225.827	N6929589.454 E501222.573	N6929591.215	E501250.399	N6929638.648	E501258.205	N6929657.061	E301203.901 N6929681.233
RUNNING CHAINAGE		{		8 6 6 31.69)1	169.23.32	4	22.016 25.016	58.716		00 0:19.999		66 61 25.386	45.385 N
^	, \	}		9							10			
<u>/c</u>	: <u>\</u> T		~		Scales	~~~	\sim		\sim	$\overline{}$	~~~~	\sim	\cdots	
	+				500105									Surveyor
	+				HORZ	0 10	20	40		60)	80	100m	
	+					0 1	2	4	1:100)0 6		8	10m	
		S.S. S.S.			VERT				1:10	0				Planı
A ISSUED FOR CONSTRUCTION J.E sue Description DF	+		G.E.											
Description DF Image:	<u>`</u>	СН	VE	Date										

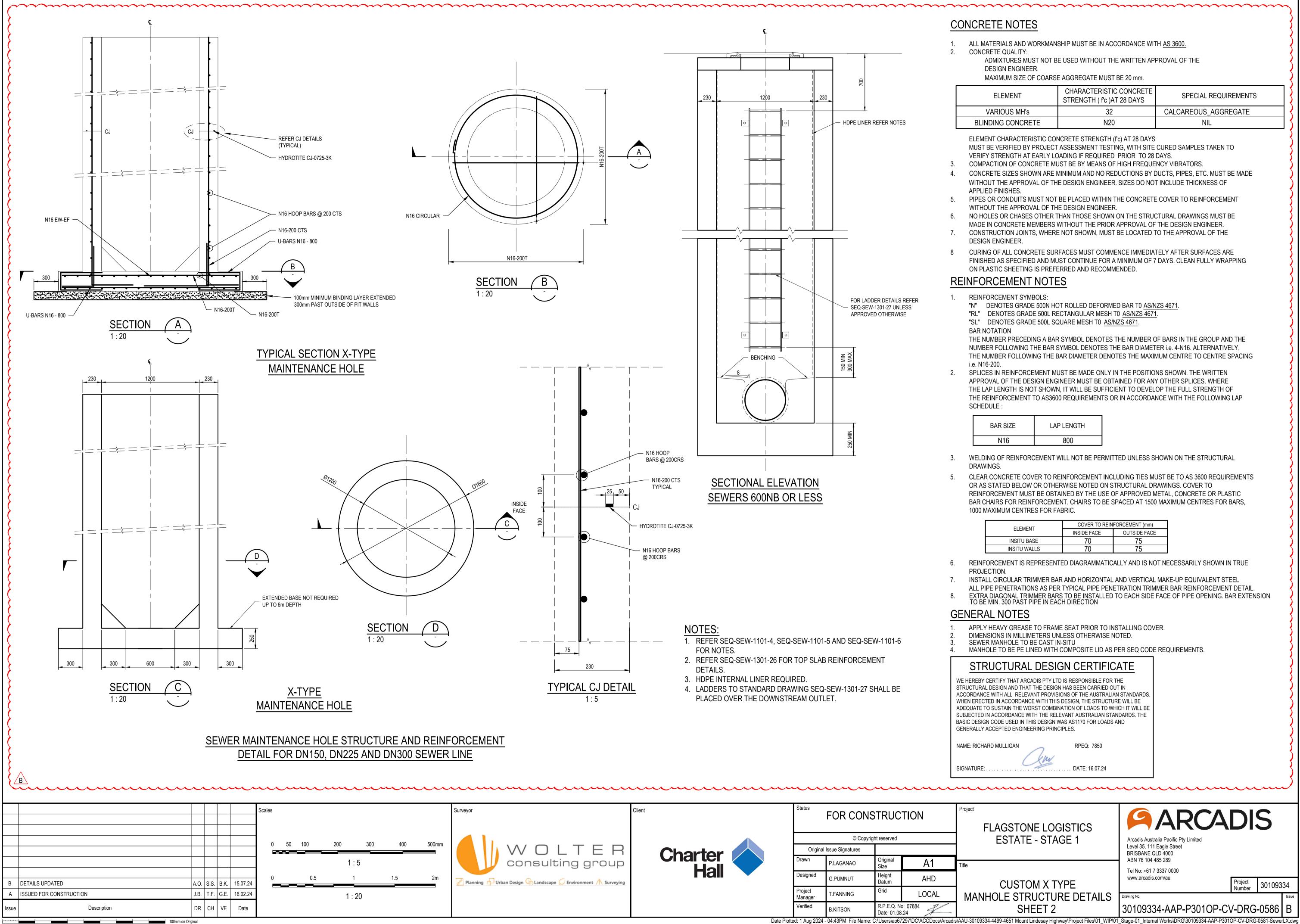




100mm on Original

111

veyor	Client	Status	FOR CON	STRUC	ΓΙΟΝ	Project FLAGSTONE LOGISTICS	ARCADIS		
WOLTER	Charter		© Copyr I Issue Signatures	ight reserved		ESTATE - STAGE 1	Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000		
consulting group	Hall	Drawn	P.LAGANAO	Original Size	A1	Title	ABN 76 104 485 289 Tel No: +61 7 3337 0000		
Planning 🗗 Urban Design 🚱 Landscape 💭 Environment 🥂 Surveying		Designed	G.PUMNUT	Height Datum	AHD	SEWER LONGITUDINAL	www.arcadis.com/au		
		Project Manager	T.FANNING	Grid	LOCAL	SECTION SHEET 4	Drawing No. Usue		
	Verified	B.KITSON	R.P.E.Q. No Date 01.08.			30109334-AAP-P3010P-CV-DRG-0584 A			
	Date F	Plotted: 1 Aug 2024	- 04:42PM File Name	C:\Users\ao672	97\DC\ACCDocs\Arcadis	s\AAU-30109334-4499-4651 Mount Lindesay Highway\Project Files\01_WIP\01	I_Stage-01_Internal Works\DRG\30109334-AAP-P301OP-CV-DRG-0581-SewerLX.dwg		



yor	Client	Status	FOR CONS	STRUC	TION	Project
			© Copyrig	ght reserved		
	Charter	Origin	al Issue Signatures			
consulting group		Drawn	P.LAGANAO	Original Size	A1	Title
Planning 🗗 Urban Design 🌝 Landscape 💭 Environment 🧥 Surveying	Hall	Designed	G.PUMNUT	Height Datum	AHD	
		Project Manager	T.FANNING	Grid	LOCAL	
		Verified	B.KITSON	R.P.E.Q. No Date 01.08		

100mm on Original

Date Plotted: 1 Aug 2024 - 04:43PM File Name: C:\Users\ao67297\DC\ACCDocs\Arcadis\AAU-30109334-4499-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Stage-01_Internal Works\DRG\30109334-AAP-P301OP-CV-DRG-0581-SewerLX.dwg

CONCRETE NOTES

ALL MATERIALS AND WORKMANSHIP MUST BE IN ACCORDANCE WITH AS 3600.

ADMIXTURES MUST NOT BE USED WITHOUT THE WRITTEN APPROVAL OF THE DESIGN ENGINEER.

MAXIMUM SIZE OF COARSE AGGREGATE MUST BE 20 mm.

ELEMENT	CHARACTERISTIC CONCRETE STRENGTH (f'c)AT 28 DAYS	SPECIAL REQUIREMENTS	
VARIOUS MH's	32	CALCAREOUS_AGGREGATE	•
NDING CONCRETE	N20	NIL	

ELEMENT CHARACTERISTIC CONCRETE STRENGTH (fc) AT 28 DAYS

MUST BE VERIFIED BY PROJECT ASSESSMENT TESTING, WITH SITE CURED SAMPLES TAKEN TO VERIFY STRENGTH AT EARLY LOADING IF REQUIRED PRIOR TO 28 DAYS.

COMPACTION OF CONCRETE MUST BE BY MEANS OF HIGH FREQUENCY VIBRATORS. CONCRETE SIZES SHOWN ARE MINIMUM AND NO REDUCTIONS BY DUCTS, PIPES, ETC. MUST BE MADE WITHOUT THE APPROVAL OF THE DESIGN ENGINEER. SIZES DO NOT INCLUDE THICKNESS OF

APPLIED FINISHES.

PIPES OR CONDUITS MUST NOT BE PLACED WITHIN THE CONCRETE COVER TO REINFORCEMENT WITHOUT THE APPROVAL OF THE DESIGN ENGINEER.

NO HOLES OR CHASES OTHER THAN THOSE SHOWN ON THE STRUCTURAL DRAWINGS MUST BE MADE IN CONCRETE MEMBERS WITHOUT THE PRIOR APPROVAL OF THE DESIGN ENGINEER. CONSTRUCTION JOINTS, WHERE NOT SHOWN, MUST BE LOCATED TO THE APPROVAL OF THE DESIGN ENGINEER.

CURING OF ALL CONCRETE SURFACES MUST COMMENCE IMMEDIATELY AFTER SURFACES ARE FINISHED AS SPECIFIED AND MUST CONTINUE FOR A MINIMUM OF 7 DAYS. CLEAN FULLY WRAPPING ON PLASTIC SHEETING IS PREFERRED AND RECOMMENDED.

REINFORCEMENT NOTES

REINFORCEMENT SYMBOLS:

"N" DENOTES GRADE 500N HOT ROLLED DEFORMED BAR TO AS/NZS 4671

"RL" DENOTES GRADE 500L RECTANGULAR MESH T0 AS/NZS 4671.

"SL" DENOTES GRADE 500L SQUARE MESH T0 AS/NZS 4671.

THE NUMBER PRECEDING A BAR SYMBOL DENOTES THE NUMBER OF BARS IN THE GROUP AND THE NUMBER FOLLOWING THE BAR SYMBOL DENOTES THE BAR DIAMETER i.e. 4-N16. ALTERNATIVELY, THE NUMBER FOLLOWING THE BAR DIAMETER DENOTES THE MAXIMUM CENTRE TO CENTRE SPACING

SPLICES IN REINFORCEMENT MUST BE MADE ONLY IN THE POSITIONS SHOWN. THE WRITTEN APPROVAL OF THE DESIGN ENGINEER MUST BE OBTAINED FOR ANY OTHER SPLICES. WHERE THE LAP LENGTH IS NOT SHOWN, IT WILL BE SUFFICIENT TO DEVELOP THE FULL STRENGTH OF THE REINFORCEMENT TO AS3600 REQUIREMENTS OR IN ACCORDANCE WITH THE FOLLOWING LAP

BAR SIZE	LAP LENGTH
N16	800

WELDING OF REINFORCEMENT WILL NOT BE PERMITTED UNLESS SHOWN ON THE STRUCTURAL

CLEAR CONCRETE COVER TO REINFORCEMENT INCLUDING TIES MUST BE TO AS 3600 REQUIREMENTS OR AS STATED BELOW OR OTHERWISE NOTED ON STRUCTURAL DRAWINGS. COVER TO REINFORCEMENT MUST BE OBTAINED BY THE USE OF APPROVED METAL, CONCRETE OR PLASTIC BAR CHAIRS FOR REINFORCEMENT. CHAIRS TO BE SPACED AT 1500 MAXIMUM CENTRES FOR BARS, 1000 MAXIMUM CENTRES FOR FABRIC.

FI FMENT	COVER TO REINFORCEMENT (mm)					
ELEMENT	INSIDE FACE	OUTSIDE FACE				
INSITU BASE	70	75				
INSITU WALLS	70	75				

REINFORCEMENT IS REPRESENTED DIAGRAMMATICALLY AND IS NOT NECESSARILY SHOWN IN TRUE

INSTALL CIRCULAR TRIMMER BAR AND HORIZONTAL AND VERTICAL MAKE-UP EQUIVALENT STEEL ALL PIPE PENETRATIONS AS PER TYPICAL PIPE PENETRATION TRIMMER BAR REINFORCEMENT DETAIL. EXTRA DIAGONAL TRIMMER BARS TO BE INSTALLED TO EACH SIDE FACE OF PIPE OPENING. BAR EXTENSION TO BE MIN. 300 PAST PIPE IN EACH DIRECTION

APPLY HEAVY GREASE TO FRAME SEAT PRIOR TO INSTALLING COVER. DIMENSIONS IN MILLIMETERS UNLESS OTHERWISE NOTED. SEWER MANHOLE TO BE CAST IN-SITU

MANHOLE TO BE PE LINED WITH COMPOSITE LID AS PER SEQ CODE REQUIREMENTS.

STRUCTURAL DESIGN CERTIFICATE

WE HEREBY CERTIFY THAT ARCADIS PTY LTD IS RESPONSIBLE FOR THE STRUCTURAL DESIGN AND THAT THE DESIGN HAS BEEN CARRIED OUT II ACCORDANCE WITH ALL RELEVANT PROVISIONS OF THE AUSTRALIAN STANDARDS WHEN ERECTED IN ACCORDANCE WITH THIS DESIGN, THE STRUCTURE WILL BE ADEQUATE TO SUSTAIN THE WORST COMBINATION OF LOADS TO WHICH IT WILL B SUBJECTED IN ACCORDANCE WITH THE RELEVANT AUSTRALIAN STANDARDS. THE BASIC DESIGN CODE USED IN THIS DESIGN WAS AS1170 FOR LOADS AND GENERALLY ACCEPTED ENGINEERING PRINCIPLES.

RPEQ: 7850

DATE: 16.07.24

CUSTOM X TYPE MANHOLE STRUCTURE DETAILS SHEET 2

BRISBANE QLD 4000 ABN 76 104 485 289 Tel No: +61 7 3337 0000 www.arcadis.com/au

Level 35, 111 Eagle Street

Project Number 30109334

30109334-AAP-P301OP-CV-DRG-0586

SEQ CODE WATER NOTES

GENERAL NOTES

- ALL WORK AND MATERIALS SHALL BE IN ACCORDANCE WITH CURRENT SOUTH EAST QUEENSLAND WATER SUPPLY CODE SPECIFICATIONS AND STANDARDS. UNLESS SPECIFIED OTHERWISE ALL MATERIALS AND WORK SHALL COMPLY WITH THE
- RELEVANT AUSTRALIAN STANDARDS. ADOPT LIP OF KERB OR SHOULDER OF ROAD AS PERMANENT LEVEL.
- COVER ON MAINS FROM PERMANENT LEVEL TO BE AS SHOWN IN SEQ-WAT-1200-2.
- CONDUITS TO BE INSTALLED IN ACCORDANCE WITH THE STANDARD DRAWINGS.
- ALL MATERIALS USED IN THE WORKS SHALL COMPLY WITH THE QUU'S ACCEPTED PRODUCTS AND MATERIALS LIST OR BE APPROPRIATELY SHOWN, LISTED AND DEFINED IN THE ENGINEERING SUBMISSION SO THAT THE ALTERNATIVE PRODUCT OR MATERIAL CAN BE ASSESSED AND IF APPROPRIATE, APPROVED BY QUU.
- TEST/CHLORINATION POINTS TO BE INSTALLED IN ACCORDANCE WITH STANDARD DRAWING NO.SEQ-WAT-1410-1.

ALL ENVIRONMENT PROTECTION

MEASURES SHALL BE IMPLEMENTED

PRIOR TO ANY CONSTRUCTION WORK.

THE CONSTRUCTION OF THE WATER RETICULATION WORK SHOWN ON THIS DRAWING MUST BE SUPERVISED BY AN ENGINEER WHO HAS RPEQ REGISTRATION. WORKS NOT COMPLYING WITH THIS REQUIREMENT WILL NOT BE PERMITTED TO CONNECT TO THE RETICULATION SYSTEM.

VEGETATION PROTECTION

- A. TREES LOCATED ALONG THE FOOTPATH SHALL BE, TRANSPLANTED PRIOR TO CONSTRUCTION, OR REPLACED IF DESTROYED. WHEN WORKING WITHIN 4m OF TREES, RUBBER OR HARDWOOD GIRDLES
- SHALL BE CONSTRUCTED WITH 1.8m BATTENS CLOSELY SPACED AND ARRANGED VERTICALLY FROM GROUND LEVEL. GIRDLES SHALL BE STRAPPED TO TREES PRIOR TO CONSTRUCTION AND REMAIN UNTIL COMPLETION.
- TREE ROOTS SHALL BE TUNNELLED UNDER, RATHER THAN SEVERED. IF ROOTS C. ARE SEVERED THE DAMAGED AREA SHALL BE TREATED WITH A SUITABLE FUNGICIDE. CONTACT RELEVANT COUNCIL ARBORIST FOR FURTHER ADVICE. D. ANY TREE LOPPING REQUIRED SHOULD BE UNDERTAKEN BY AN APPROVED
- ARBORIST.

SOIL

- A. TOPSOIL AND SUBSOIL SHALL BE STOCKPILED SEPARATELY. CARE SHALL BE TAKEN TO PREVENT SEDIMENT FROM ENTERING THE В.
- STORMWATER SYSTEM. THIS MAY INVOLVE PLACING APPROPRIATE SEDIMENT CONTROLS AROUND STOCKPILES. C.
- ACID SULPHATE SOILS EXIST IN THE WORKS AREA. THE OUTPUTS FROM THE RISK ASSESSMENT BASED ON THE QUEENSLAND ACID SULPHATE SOIL TECHNICAL MANUAL REQUIRES THAT ACID SULPHATE SOILS BE MANAGED AS FOLLOWS: (DELETE IF NO ACID SULPHATE SOILS)

REHABILITATION

- PREDISTURBANCE SOIL PROFILES AND COMPACTION LEVELS SHALL BE A. REINSTATED.
- В. PREDISTURBANCE VEGETATION PATTERNS SHALL BE RESTORED.

SAFETY

A. THE DESIGN AND CONSTRUCTION OF THE WORKS SHALL COMPLY WITH ALL QUEENSLAND LEGISLATION.

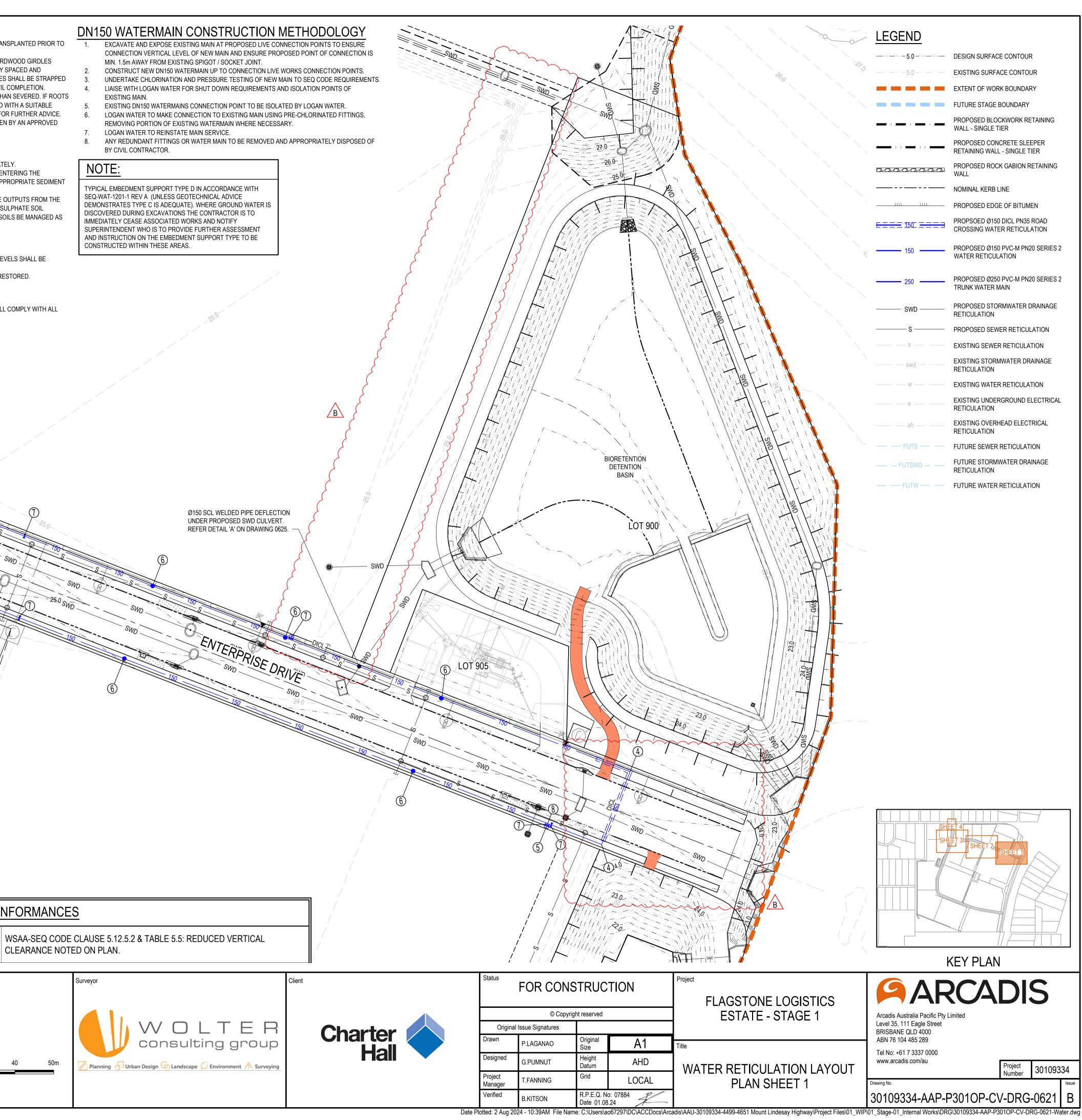
INCLUDING CLEARING, COMMENCING.

			OTECHNICAL ASSUMPTION. (O 1208-1 FOR THRUST BLOCK		
ITEM	FITTING	PIPE SIZE (mm)	MAX THRUST (kN)	THRUST BLOCK LENGTH (mm)	
(1)	11.25° BEND	Ø150	5.8	600	
\bigcirc	TI.25 DEND	Ø250	15.1	600	
<u></u>		Ø150	11.5	600	
2	22.50° BEND	Ø250	30.1	600	
		Ø150	22.6	600	
3	45.00° BEND	Ø225	59.0	910	
		Ø150	41.7	930	
4	90.00° BEND	Ø250	109.0	1700	
ē		Ø150	29.5	660	
5	DEAD END CAP	Ø250	77.1	1200	
		Ø150	-	-	
6	POTABLE HYDRANT	Ø250	-	-	
	0700.000	Ø150	33.3	X=500; Y=300; Z=700	
\bigcirc	STOP VALVE	Ø250	86.7	X=850; Y=500; Z=1400	
8	Ø150 X Ø150 TEE	Ø150	29.5	660	
9	Ø225 X Ø225 TEE	Ø250	77.1	1200	
10	Ø250 X Ø150 TEE	Ø250>Ø150	77.1	1200	

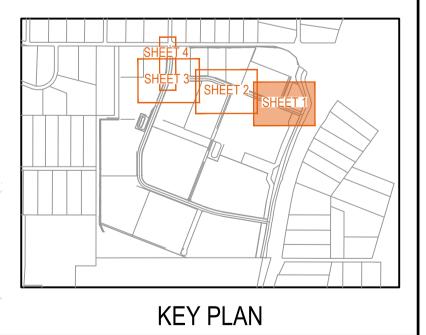

100mm on Original

B TEMPORARY ACCESS R

NON-CONFORMANCES


- - CLEARANCE NOTED ON PLAN.

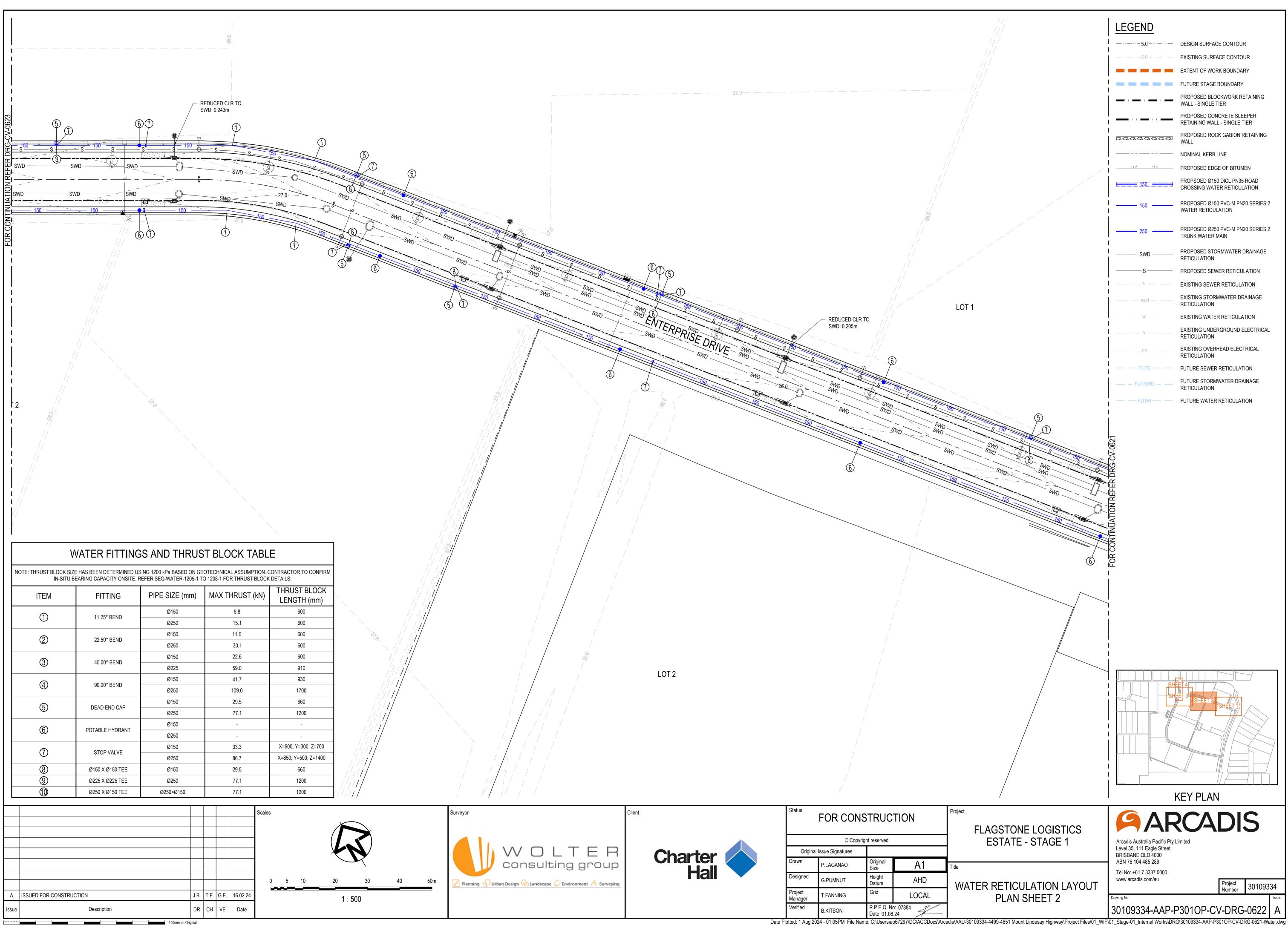
						Scales Surv	veyor
	TEMPORARY ACCESS ROAD REMOVED	J.B.	S.S.	B.K.	15.07.24	0 5 10 20 30 40 50m	Planning 🗗
ι.	ISSUED FOR CONSTRUCTION	J.B.	T.F.	G.E.	16.02.24	1 : 500	
ue	Description	DR	СН	VE	Date		
	•						



1.

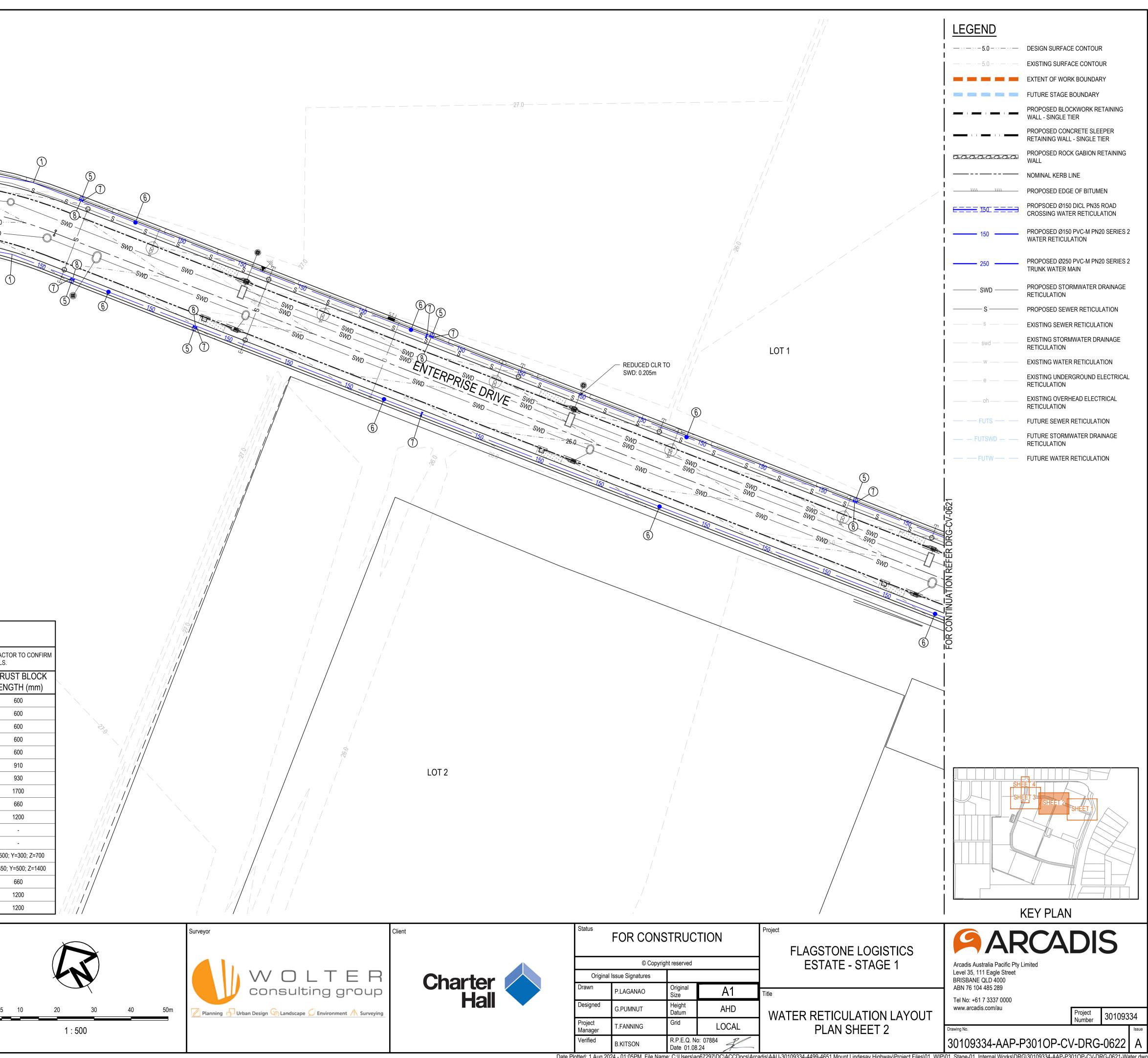
3

LEGEND	
<u> </u>	DESIGN SURFACE CONTOUR
 <u> </u>	EXISTING SURFACE CONTOUR
	EXTENT OF WORK BOUNDARY
	FUTURE STAGE BOUNDARY
	PROPOSED BLOCKWORK RETAINING WALL - SINGLE TIER
	PROPOSED CONCRETE SLEEPER RETAINING WALL - SINGLE TIER
000000000	PROPOSED ROCK GABION RETAINING WALL
	NOMINAL KERB LINE
	PROPOSED EDGE OF BITUMEN
 150 	PROPSOED Ø150 DICL PN35 ROAD CROSSING WATER RETICULATION
150	PROPOSED Ø150 PVC-M PN20 SERIES 2 WATER RETICULATION
250	PROPOSED Ø250 PVC-M PN20 SERIES 2 TRUNK WATER MAIN
SWD	PROPOSED STORMWATER DRAINAGE RETICULATION
S	PROPOSED SEWER RETICULATION
S	EXISTING SEWER RETICULATION
swd	EXISTING STORMWATER DRAINAGE RETICULATION
	EXISTING WATER RETICULATION
e	EXISTING UNDERGROUND ELECTRICAL RETICULATION
oh	EXISTING OVERHEAD ELECTRICAL RETICULATION
— — FUTS — —	FUTURE SEWER RETICULATION
— — FUTSWD — —	FUTURE STORMWATER DRAINAGE RETICULATION
— — FUTW — —	FUTURE WATER RETICULATION

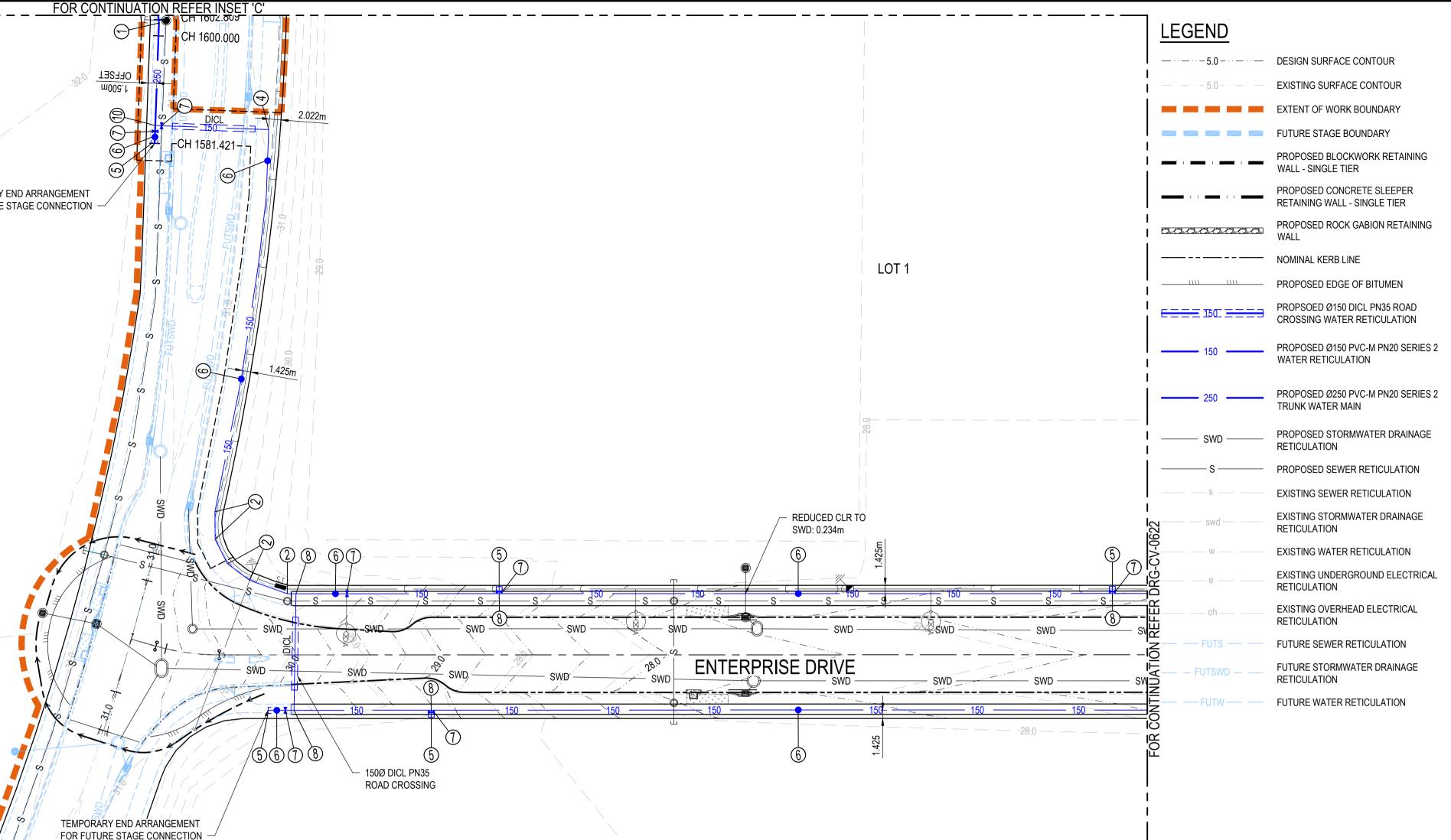

30109334-AAP-P301OP-CV-DRG-0621

ARCADIS FLAGSTONE LOGISTICS ESTATE - STAGE 1 Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289 Tel No: +61 7 3337 0000

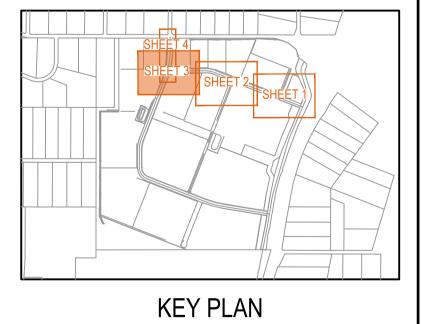
www.arcadis.com/au


WATER RETICULATION LAYOUT PLAN SHEET 1

Project Number 30109334



V	VATER FITTING	S AND THRUS	T BLOCK TABL	E
			OTECHNICAL ASSUMPTION. C O 1208-1 FOR THRUST BLOCK	
ITEM	FITTING	PIPE SIZE (mm)	MAX THRUST (kN)	THRUST BLOCK LENGTH (mm)
(1)	11.25° BEND	Ø150	5.8	600
\bigcirc	TT.25 BEND	Ø250	15.1	600
2	22.50° BEND	Ø150	11.5	600
	22.30 BEND	Ø250	30.1	600
3	45.00° BEND	Ø150	22.6	600
9	45.00 BEND	Ø225	59.0	910
	90.00° BEND	Ø150	41.7	930
4	90.00 BEND	Ø250	109.0	1700
Ē		Ø150	29.5	660
5	DEAD END CAP	Ø250	77.1	1200
		Ø150	-	-
6	POTABLE HYDRANT	Ø250	-	-
\overline{O}		Ø150	33.3	X=500; Y=300; Z=700
\bigcup	STOP VALVE	Ø250	86.7	X=850; Y=500; Z=1400
8	Ø150 X Ø150 TEE	Ø150 X Ø150 TEE Ø150		660
9	Ø225 X Ø225 TEE	Ø250	77.1	1200
1	Ø250 X Ø150 TEE	Ø250>Ø150	77.1	1200

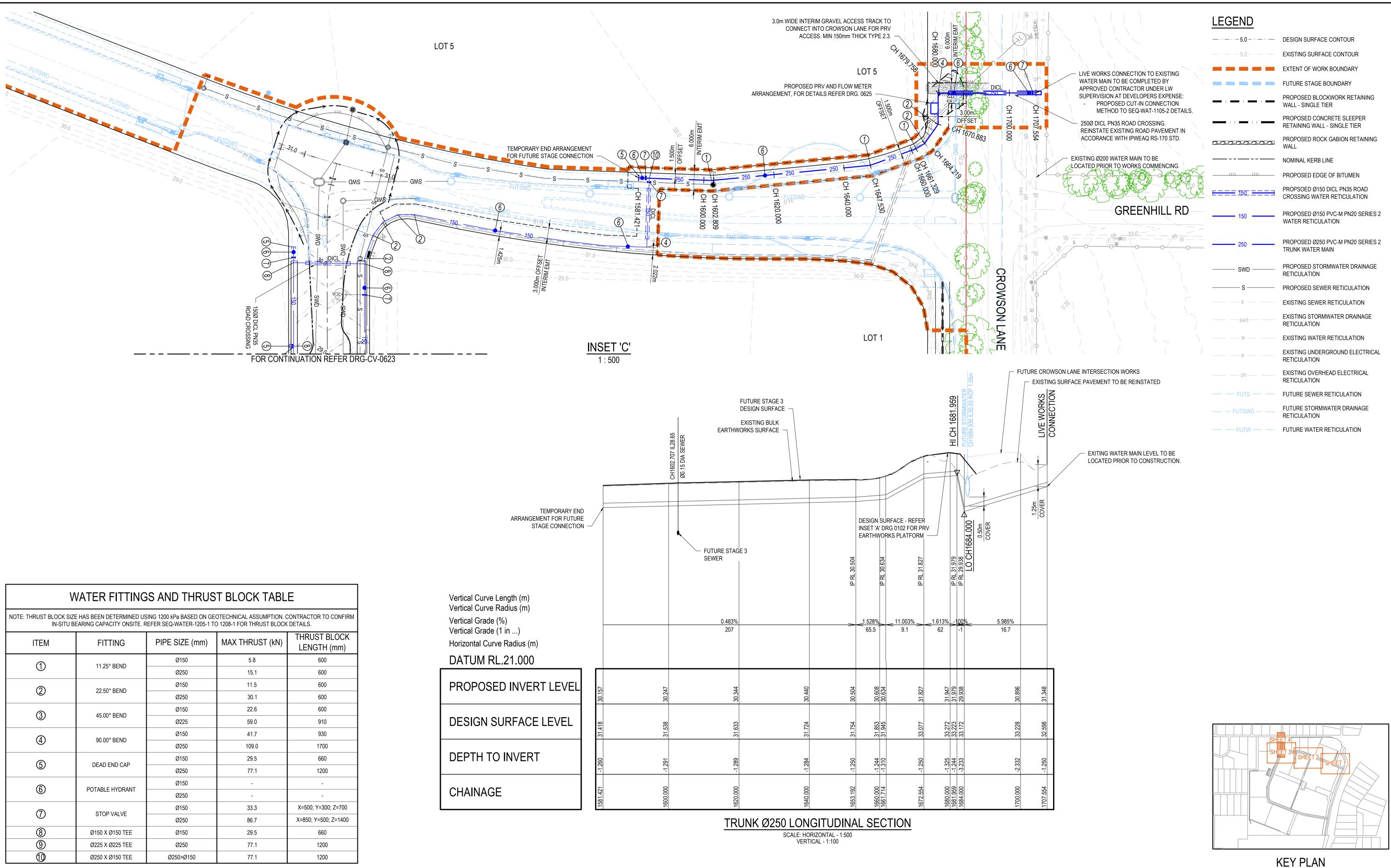

						Scal
Α	ISSUED FOR CONSTRUCTION	J.B.	T.F.	G.E.	16.02.24	
lssue	Description	DR	СН	VE	Date	
	100mm on Ori	ainal	•			

CH 1600.000					
TEMPORARY END ARRANGEMENT FOR FUTURE STAGE CONNECTION					
34:0 			LOT	Γ1	
∽ ∽					
32.8					
LOT 5					
			REDUCED CLR TO SWD: 0.234m		
			(g) 1.425m		(5) (1
	s <mark>50 s - s - s - s - s - s - s - s - s - s </mark>		S S	<u>S</u> S	s ¹⁵⁰ s
SWD SWD SWD		WD	SWD	2 SWD	
SWD SWD SWD SWD				SIMD	- <u>SIMD</u> - <u>-</u> S
				150 —	150 3
			425		28.0
5 6 7 8 5 150Ø DICL PN35 ROAD CROSSING	\backslash		<u>(6)</u>		
FOR FUTURE STAGE CONNECTION					
		\backslash			
					
	V	VATER FITTING	S AND THRUS	ST BLOCK TABL	.E
				EOTECHNICAL ASSUMPTION. C TO 1208-1 FOR THRUST BLOCK	CDETAILS.
	ITEM	FITTING	PIPE SIZE (mm)	MAX THRUST (kN)	THRUST BLOCK LENGTH (mm)
	1	11.25° BEND	Ø150 Ø250	5.8	600 600
			Ø150	11.5	600
	2	22.50° BEND	0050		600
			Ø250 Ø150	30.1 22.6	600 600
	3	45.00° BEND		30.1	
	3 4		Ø150 Ø225 Ø150 Ø250	30.1 22.6 59.0 41.7 109.0	600 910 930 1700
	3	45.00° BEND	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250	30.1 22.6 59.0 41.7	600 910 930
	3 4	45.00° BEND 90.00° BEND	Ø150 Ø225 Ø150 Ø250 Ø150	30.1 22.6 59.0 41.7 109.0 29.5	600 910 930 1700 660
	3 4 5	45.00° BEND 90.00° BEND DEAD END CAP	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250 Ø150	30.1 22.6 59.0 41.7 109.0 29.5 77.1 -	600 910 930 1700 660 1200 -
	3 (4) (5) (6) (7) (8)	45.00° BEND 90.00° BEND DEAD END CAP POTABLE HYDRANT STOP VALVE Ø150 X Ø150 TEE	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150	30.1 22.6 59.0 41.7 109.0 29.5 77.1 - 33.3 86.7 29.5	600 910 930 1700 660 1200 - - X=500; Y=300; Z=700 X=850; Y=500; Z=1400 660
	3 (4) (5) (6) (7)	45.00° BEND 90.00° BEND DEAD END CAP POTABLE HYDRANT STOP VALVE	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250	30.1 22.6 59.0 41.7 109.0 29.5 77.1 - - 33.3 86.7	600 910 930 1700 660 1200 - - X=500; Y=300; Z=700 X=850; Y=500; Z=1400
	3 (4) (5) (6) (7) (8) (9) (10) Status	45.00° BEND 90.00° BEND DEAD END CAP POTABLE HYDRANT STOP VALVE Ø150 X Ø150 TEE Ø225 X Ø225 TEE Ø250 X Ø150 TEE	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250>Ø150	30.1 22.6 59.0 41.7 109.0 29.5 77.1 - 33.3 86.7 29.5 77.1	600 910 930 1700 660 1200 - X=500; Y=300; Z=700 X=850; Y=500; Z=1400 660 1200
	3 4 5 6 7 8 9 10 Status FOR (45.00° BEND 90.00° BEND DEAD END CAP POTABLE HYDRANT STOP VALVE Ø150 X Ø150 TEE Ø225 X Ø225 TEE Ø250 X Ø150 TEE	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250>Ø150	30.1 22.6 59.0 41.7 109.0 29.5 77.1 - - 33.3 86.7 29.5 77.1 77.1 77.1 77.1	600 910 930 1700 660 1200 - - X=500; Y=300; Z=700 X=850; Y=500; Z=1400 660 1200 1200
	3 4 5 6 7 8 9 10 Status FOR (45.00° BEND 90.00° BEND DEAD END CAP POTABLE HYDRANT STOP VALVE Ø150 X Ø150 TEE Ø225 X Ø225 TEE Ø250 X Ø150 TEE SONSTRUCTIO	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250>Ø150	30.1 22.6 59.0 41.7 109.0 29.5 77.1 - 33.3 86.7 29.5 77.1 - 109.0	600 910 930 1700 660 1200 - - X=500; Y=300; Z=700 X=850; Y=500; Z=1400 660 1200 1200
	③ ④ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ① Status FOR (Original Issue Signat Drawn P.LAGANA	45.00° BEND 90.00° BEND DEAD END CAP POTABLE HYDRANT STOP VALVE Ø150 X Ø150 TEE Ø225 X Ø225 TEE Ø250 X Ø150 TEE Ø250 X Ø150 TEE ONSTRUCTIO	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250>Ø150	30.1 22.6 59.0 41.7 109.0 29.5 77.1 - - 33.3 86.7 29.5 77.1 77.1 77.1 77.1	600 910 930 1700 660 1200 - - X=500; Y=300; Z=700 X=850; Y=500; Z=1400 660 1200 1200
In the second secon	③ ④ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ① Status FOR (Original Issue Signat Drawn P.LAGANA Designed G.PUMNU	45.00° BEND 90.00° BEND DEAD END CAP POTABLE HYDRANT STOP VALVE Ø150 X Ø150 TEE Ø225 X Ø225 TEE Ø250 X Ø150 TEE Ø250 X Ø150 TEE Ø250 X Ø150 TEE	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250>Ø150	30.1 22.6 59.0 41.7 109.0 29.5 77.1 - 33.3 86.7 29.5 77.1 77.1 77.1 77.1 77.1 77.1	600 910 930 1700 660 1200 - - X=500; Y=300; Z=700 X=850; Y=500; Z=1400 660 1200 1200 1200 1200
O 5 10 20 30 40 50m O L T E R O S 10 20 30 40 50m O L T E R O S 10 20 30 40 50m O L T E R O Support O L T E R O S	③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ① Status FOR (Original Issue Signat Drawn P.LAGANA	45.00° BEND 90.00° BEND DEAD END CAP POTABLE HYDRANT STOP VALVE Ø150 X Ø150 TEE Ø225 X Ø225 TEE Ø250 X Ø150 TEE Ø250 X Ø150 TEE Ø250 X Ø150 TEE Ø250 X Ø150 TEE OCONSTRUCTIO	Ø150 Ø225 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250 Ø150 Ø250>Ø150	30.1 22.6 59.0 41.7 109.0 29.5 77.1 - 33.3 86.7 29.5 77.1 77.1 77.1 77.1 77.1	600 910 930 1700 660 1200 - - X=500; Y=300; Z=700 X=850; Y=500; Z=1400 660 1200 1200 1200 1200

V	VATER FITTING	S AND THRUS	T BLOCK TABL	E
	E HAS BEEN DETERMINED US EARING CAPACITY ONSITE. F			
ITEM	FITTING	PIPE SIZE (mm)	MAX THRUST (kN)	THRUST BLOCK LENGTH (mm)
1	11.25° BEND	Ø150	5.8	600
\bigcirc	TT.23 DEND	Ø250	15.1	600
2	22.50° BEND	Ø150	11.5	600
	22.30 BEND	Ø250	30.1	600
6		Ø150	22.6	600
3	45.00° BEND	Ø225	59.0	910
6		Ø150	41.7	930
4	90.00° BEND	Ø250	109.0	1700
6		Ø150	29.5	660
5	DEAD END CAP	Ø250	77.1	1200
		Ø150	-	-
6	POTABLE HYDRANT	Ø250	-	-
	0700.1411/5	Ø150	33.3	X=500; Y=300; Z=700
\bigcirc	STOP VALVE	Ø250	86.7	X=850; Y=500; Z=1400
8	Ø150 X Ø150 TEE	Ø150	29.5	660
9	Ø225 X Ø225 TEE	Ø250	77.1	1200
	Ø250 X Ø150 TEE	Ø250>Ø150	77.1	1200

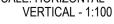
ARCADIS Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289

Project Number 30109334


A

30109334-AAP-P301OP-CV-DRG-0623

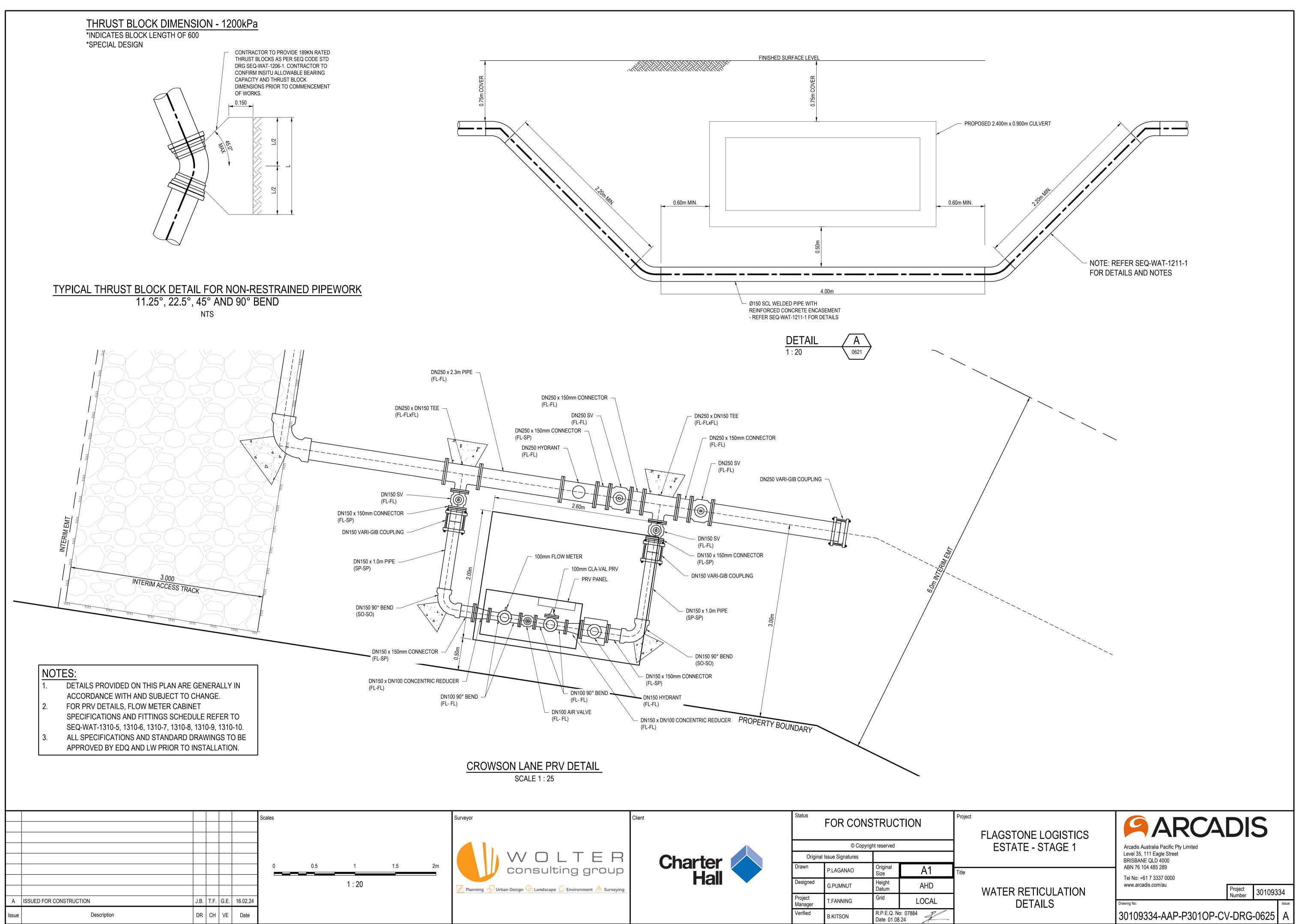
VIP\01_Stage-01_Internal Works\DRG\30109334-AAP-P301OP-CV-DRG-0621-Water.dwg


Tel No: +61 7 3337 0000 www.arcadis.com/au

rawing No.

	SIZE HAS BEEN DETERMINED U U BEARING CAPACITY ONSITE. I			
ITEM	FITTING	PIPE SIZE (mm)	MAX THRUST (kN)	THRUST BLOCK LENGTH (mm)
(1)	11.25° BEND	Ø150	5.8	600
\bigcirc	11.25 BEND	Ø250	15.1	600
0	22.50° BEND	Ø150	11.5	600
2	22.50 BEND	Ø250	30.1	600
3	45.00° BEND	Ø150	22.6	600
	45.00 BEND	Ø225	59.0	910
	90.00° BEND	Ø150	41.7	930
4	90.00 BEND	Ø250	109.0	1700
5	DEAD END CAP	Ø150	29.5	660
9	DEAD END CAP	Ø250	77.1	1200
6		Ø150	-	-
6	POTABLE HYDRANT	Ø250	-	-
	STOP VALVE	Ø150	33.3	X=500; Y=300; Z=700
\bigcirc	STOP VALVE	Ø250	86.7	X=850; Y=500; Z=1400
8	Ø150 X Ø150 TEE	Ø150	29.5	660
9	Ø225 X Ø225 TEE	Ø250	77.1	1200
10	Ø250 X Ø150 TEE	Ø250>Ø150	77.1	1200

						Scales			5			
						0	5	10	20	30	40	50m
A	ISSUED FOR CONSTRUCTION	J.B.	T.F.	G.E.	16.02.24	0	1	2	4 4	500 6	8	10m
lssue	Description	DR 100mm on Original	СН	VE	Date				1:	100		



Client

Status FOR CONSTRUCTION				Project FLAGSTONE LOGISTIC			
© Copyright reserved				ESTATE - STAGE 1			
Original Issue Signatures							
Drawn	P.LAGANAO	Original Size	A1	Title			
Designed	G.PUMNUT	Height Datum	AHD		R RETICULATION LAYC		
Project Manager	T.FANNING	Grid	LOCAL	PLAN SHEET 4			
Verified	B.KITSON	R.P.E.Q. No Date 01.08					

Date Plotted: 1 Aug 2024 - 01:05PM File Name: C:\Users\ao67297\DC\ACCDocs\Arcadis\AAU-30109334-4499-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Stage-01_Internal Works\DRG\30109334-AAP-P301OP-CV-DRG-0621-Water.dwg

100mm on Original

Date Plotted: 1 Aug 2024 - 01:06PM File Name: C:\Users\ao67297\DC\ACCDocs\Arcadis\AAU-30109334-4499-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Stage-01_Internal Works\DRG\30109334-AAP-P301OP-CV-DRG-0621-Water.dwg

Appendix C – Architectural Drawings

SITE PLAN SCALE: 1:1000

TITLE:

SITE PLAN

DEVELOPMENT ANALYSIS

BUILDING	GLA
WAREHOUSE	41,440 m ²
MHE & WORKSHOP	1,010 m ²
DG STORE	325 m ²
OFFICE G.F	601 m ²
OFFICE FF	400 m ²
DOCK OFC 2	90 m²
DOCK OFC 1	90 m²
TOTAL AREA	43,956 m ²
EXTERNAL AREAS (APPROX)	
CANOPIES	6,590 m²
HARDSTAND	26,711 m ²
LIGHT DUTY	4,314 m²
PAVING	542 m ²

LANDSCAPE	2,709 m ²
PARKING	
BAYS PROVIDED	165
SITE COVERAGE	
TOTAL SITE AREA	78,698m²
TOTAL BUILDING FOOTPRINT	43,557 m ²

56%

INCL. PUMP HOUSE

LEGEND

	WAREHOUSE
	OFFICE
	INDICATES EXTENT OF HEAVY DUTY HARDSTAND TO CIVIL ENGINEERS DETAILS
	INDICATES EXTENT OF LIGHT DUTY PAVEMENT TO CIVIL ENGINEERS DETAILS
	INDICATES EXTENT OF UPGRADED HEAVY DUTY PAVEMENT TO CIVIL ENGINEERS DETAILS
	CONCRETE PAVING WITH EXPOSED AGGREGATE FINISH OR SIMILAR
	SEALED FIRE TRUCK ACCESS TRACK TO BRIGADE APPROVAL
	AREA OF GRASS / LANDSCAPING, REFER TO LANDSCAPE ARCHITECTS DRAWINGS FOR LANDSCAPE LAYOUT AND DETAILS
	LANDSCAPE SETBACK
	BUILDING SETBACK
FN1	FENCE TYPE 2 - 2100mm HIGH BLACK PVC COATED CHAINMESH FENCING WITH 3X ROWS OF BARBED WIRE ABOVE
FN2	FENCE TYPE 1 - 2100mm HIGH PALISADE/ DIPLOMAT TYPE FENCING. BLACK POWDERCOATED
SG	SLIDING GATE

No.	DATE:	REVISION:	BY:	CHK:	
P1	15.08.2024	PRELIMINARY ISSUE	ST	ML	
P2	16.08.2024	PRELIMINARY ISSUE	ST	ML	
All areas indicated are indicative for design and planning purposes only and should not be used for					

any contractual reasons without verification by a licensed surveyor or further design development being completed.

Watson Young Architects P/L Melbourne | Perth | Sydney 03 9516 8555 ACN: 111398700 8 Grattan Street Prahran VIC 3181 | e: info@watsonyoung.com.au | w: watsonyoung.com.au © Watson Young Architects. This drawing is protected by copyright.

JOB NO:

24230

REVISION:

DRAWING NO:

Appendix D – Arcadis Water Network Analysis

WATER NETWORK ASSESSMENT

4499 – 4651 MOUNT LINDESAY HIGHWAY NORTH MACLEAN

CHARTER HALL PRIME INDUSTRIAL FUND

COMPLIANCE ENDORSEMENT referred to in the PDA DEVELOPMENT APPROVAL

Approval no: DEV2018/961/9

Date: 22-Feb-24

4499 – 4651 MOUNT LINDESAY HIGHWAY, NORTH MACLEAN

WATER NETWORK ASSESSMENT

Author	Mike Cazeres	
Checker	Thea Fanning	Tranning
Approver	Richard Mulligan	
	RPEQ 7850	$Q_{m_{2}}$
Report No	EAG005-30109334-AAR-WNA	
Date	15/02/2024	
Revision Text	03	

This report has been prepared for Charter Hall Prime Industrial Fund in accordance with the terms and conditions of appointment for 4499-4651 Mount Lindesay Highway, North MacLean QLD 4280. Arcadis Australia Pacific Pty Limited (ABN 76 104 485 289) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Revision	Date	Description	Prepared by	Approved by
01	28/08/2023	Issued for Compliance Assessment	MC	RM
02	25/01/2024	Amended Connection Strategy	MC	RM
03	15/02/2024	Response to RFI	HQ	RM

CONTENTS

1 INTRODUCTION	1
2 SITE CHARACTERISTICS	2
2.1 LOCATION DETAILS	2
2.2 LAND USAGE	2
2.3 TOPOGRAPHY AND FEATURES	3
3 PROPOSED DEVELOPMENT	4
3.1 DEVELOPMENT STAGING	5
3.2 DEVELOPMENT LOADING	
3.3 PROJECTED CASE	7
3.4 ARCADIS CALCULATED DEVELOPMENT LOADING	8
4 ASSESSMENT SCENARIOS	9
5 WATER SUPPLY INFRASTRUCTURE	
5.1 EXISTING NETWORK	10
5.2 EDQ DCOP, ENDORSED NORTH MACLEAN CONTEXT PLAN & CONNECTIONS	10
6 MODELLING ASSUMPTIONS & DSS	12
6.1 PIPE MATERIAL	13
7 POTABLE WATER DEMAND	13
8 BOUNDARY CONDITION	13
8.1 HYDRANT PRESSURE AND FLOW MODELLING REPORT – 2021	13
8.2 FLOW & PRESSURE TESTING RESULTS – 2022	15
8.3 FLOW AND PRESSURE RESULTS BOUNDARY HGL COMPARISON	17
9 CONCEPT ULTIMATE INTERNAL WATER NETWORK LAYOUT & CONNECTIONS	18
9.1 STAGE 1 INTERNAL WATER NETWORK LAYOUT	19
9.2 STAGE 2 INTERNAL WATER NETWORK LAYOUT	21
9.3 STAGE 3 INTERNAL WATER NETWORK LAYOUT	21
9.4 DMA BOUNDARY VALVE	22
10 RESULTS AND DISCUSSION	23
11 ALTERNATIVE SUPPLY ARRANGEMENT – STAGE 2 SERVICE PRIOR TO STAGE 3 NET	WORK24
11.1 CROWSON LANE + MT LINDESAY HIGHWAY CONNECTIONS	25
12 CONCLUSION	26
APPENDIX A	27
Development Layout Plans	27
APPENDIX B	26
Concept Water Network Sizing and Layout Plan	26
APPENDIX C	27
EP Water Demand Calculations & WaterCAD Modelling Results	27

APPENDIX D	28
Logan Water Draft Technical Memorandum DD8001 North Maclean	28
APPENDIX E	29
Logan Flow and Pressure Modelling Report - 2021	29
APPENDIX F	30
HTC Group Flow and Pressure Testing Report - 2022	

1 INTRODUCTION

Arcadis has been engaged by Charter Hall Prime Industrial Fund to prepare a Water Network Assessment (WNA) for a proposed development located in North Maclean, QLD over the following allotments:

• Lot 39 on SP258739 (4499-4651 Mount Lindesay Highway, North Maclean)

With the use of the Greater Flagstone PDA Infrastructure Planning and Background Report (IPBR), Logan City Council Desired Standards of Service (2019) and Logan Water Draft Technical Memorandum (DD8001 North Maclean), a hydraulic assessment of the proposed development's internal potable water network has been undertaken.

The existing potable water supply network adjacent to the site is comprised of the following:

- 200mm DIA watermain along the eastern verge of the Mount Lindesay Highway; and
- 200mm DIA PN16 mPVC main located along the northern verge of Crowson Lane.

Revision 01 of the WNA previously specified and assessed the proposed internal water network under connections to both the existing networks within Crowson Lane (made in Stage 1) and Mt Lindesay Highway (made in Stage 2), including a proposed water main along the eastern service road connecting the internal water networks within the northern and southern internal roads as per the endorsed EDQ sewer and water context plan for the site.

1.1 Revision 02

Revision 02 has been undertaken to demonstrate internal water network DSS compliance via connection to Crowson Lane only, and reduction of the proposed water main alignment within the eastern service road with a water main extended from the southern internal road only to the future connection point to the existing Mount Lindesay Highway network prior to the Mount Lindesay Highway road crossing.

The proposed connection point to service the development is the existing DN200 main in the northern verge of Crowson Lane, constructed as part of Stage 1 works.

The proposed development will consist of 3 stages, and it is assumed that the internal water supply network within Stage 3 will be constructed in conjunction with Stage 2 works prior to the operation of Stage 2. This provides the full looped supply arrangement through Stage 3 to allow for the internal network to meet the required DSS across all stages of the development via a single connection to the existing network within Crowson Lane.

A second connection is to be made to the existing DN200 water main within the eastern verge of the Mt Lindesay Hwy during Stage 2 or Stage 3 works in accordance with the approved EDQ DCOP and provides redundancy of supply to the supply area. It is noted that this connection is not required to allow the proposed development to meet the required performance DSS and is to be isolated under normal operating conditions.

An alternative supply arrangement is further investigated in this report which explores the impacts to the internal network DSS in the unlikely event that the internal water network within Stage 3 is not constructed prior to Stage 2 operation. This alternative supply arrangement requires an additional connection to be made to the existing DN200 water network within Mt Lindesay Hwy.

The following WNA compares the existing allowances made within the Logan City Council Draft Technical Memorandum to the current development layout completed by Watson Young (MP01 P10, March 2023). The purpose of this assessment is to demonstrate internal water network compliance with the relevant Desired Standards of Service (DSS) for the proposed development across all proposed staging scenarios in accordance with the Logan City Council Desired Standards of Service 2019 documentation in accordance with the Greater Flagstone PDA Infrastructure Planning and Background Report, and the Logan Water Draft Technical Memorandum. The report also confirms that future satisfactory water servicing provision is available for the external Lot to the south.

1.2 Revision 03

Revision 03 has been created in response to the information request received from Marco Bonato of EDQ on 02/02/2024, requesting the following information:

4499-4651 MOUNT LINDESAY HIGHWAY NORTH MACLEAN | WATER NETWORK ASSESSMENT

- Please provide detailed blown-up layout of the DMA feed in the Overall Water Main Sketch Plan to address interaction with the other infrastructure within the verge and land requirement. Refer to updated drawing 30109334-AAP-WS00OP-CV-SKT-031-03 in appendix B for detailed blown-up layout of the DMA.
- Please include in the report a strategy to address potential high-pressure issues during the interim supply of Stage 2 through to the Mt Lindesay Hwy water network.
 Private pressure relief valves will be installed at the lot property connections to address potential high-pressure issue should Stage 2 be constructed independent of Stage 3 (refer to section 11.1).

2 SITE CHARACTERISTICS

2.1 LOCATION DETAILS

The subject site is located within North Maclean, South-East Queensland, Australia over the following allotments:

• Lot 39 on SP258739 (4499-4651 Mount Lindesay Highway, North Maclean)

The site is bordered by Crowson Lane to the north, Mount Lindesay Hwy to the east, a vacant lot to the south and residential lots to the west.

The total area of the site is approximately 1,177,359m² or 117.7359 ha.

Logan City Council is the local government authority.

2.2 LAND USAGE

In its current state, the project site has undergone recent vegetation clearing works and contains a high voltage electrical easement. Figure 2-1 below provides a current locality plan of the site.

Figure 2-1 Site Locality Plan (Aerial Imagery Courtesy of Nearmap)

2.3 TOPOGRAPHY AND FEATURES

The site topography consists of hills and valleys with gradual to steep grades. The site contains an overland flow path that discharges flows via a natural channel to an existing headwall that crosses Mount Lindesay Hwy. The site has a high point of approximately RL 43m AHD and a low point of RL 21m AHD.

3 PROPOSED DEVELOPMENT

The proposed development consists of five super lots and six auxiliary lots, comprising drainage, open space and a sewer pumpstation. A plan extract of the proposed development has been provided in Figure 3-1.

This plan is also provided within Appendix A and should be referred to for further clarity.

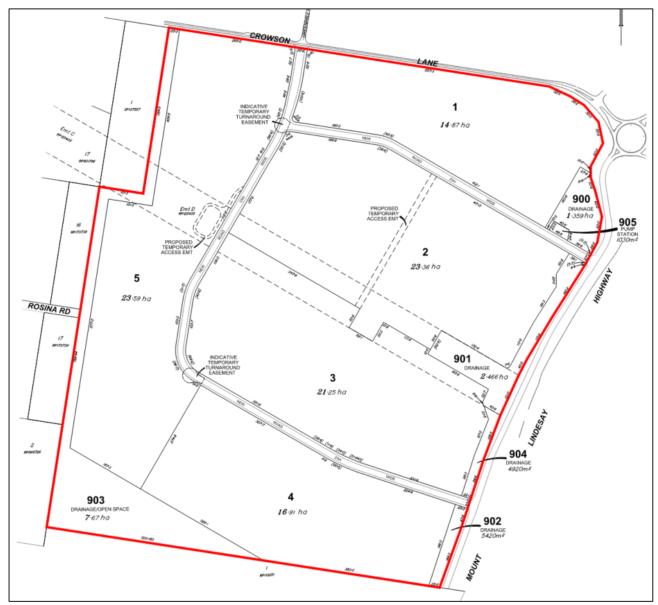


Figure 3-1 Proposed Amended ROL Layout (Source: Wolters, August 2023)

3.1 DEVELOPMENT STAGING

The proposed staging of the development site is summarised below and illustrated in Figure 3-2.

- Stage 1 Includes Superlots 1 to 2
- Stage 2 Includes Superlots 3 to 4
- Stage 3 Includes Superlot 5

It is assumed that the proposed internal water network within Stage 3 of the development will be constructed during Stage 2 works.

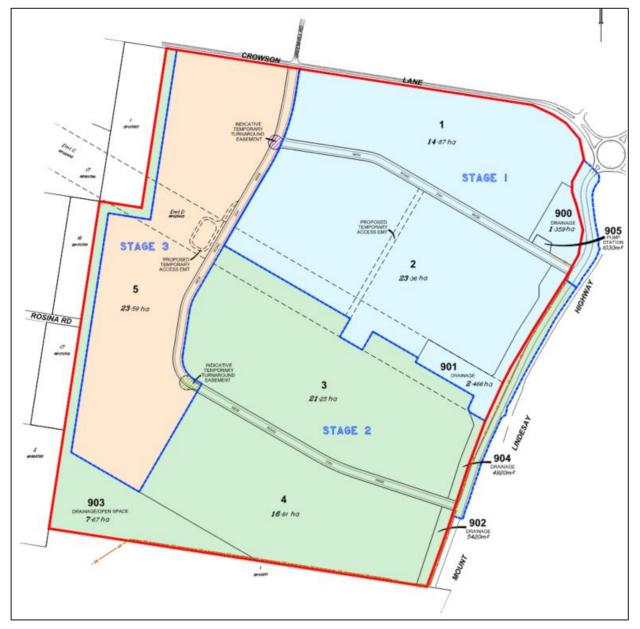


Figure 3-2 Proposed Development Staging Plan

3.2 DEVELOPMENT LOADING

For the purposes of this report, the development has been assessed under two demand cases to better determine the anticipated impact to be had on the surrounding network. These cases are as follows:

- Logan Water Projected Case Results as per the assessment completed by Logan Water within the Draft Technical Memorandum DD8001. Logan water generated EPs in accordance with Infrastructure Demand Model 2020 (IP0017) to allow for optioneering. The EPs have been assigned to 70% of the developable area as an "allowable GFA" and excludes roads, open spaces, carparks etc.
- Arcadis Calculated Developed Case The calculated demand for the development based on the EP's outlined by Logan Water for Industry Medium and Commercial. GFAs are based on development layout plans and exclude roads, open spaces, carparks etc. A 10% contingency has been applied to the demand calculated via this concept development layout for future design flexibility.

These values are compared to ensure that NM1 can suitably cater for the development as per its current designed state (Watson Young MP01 P10, March 2023). For this comparison the Projected Case will consider Industry Medium and Commercial only as per the current intention for the development.

Figure 3-3 shows the non-residential conversion rates (Equivalent Persons (EP)) for the proposed development as per Logan Water's Draft Technical Memorandum DD8001 North Maclean included within Appendix D. Refer to Appendix C for the developed case development EP and demand summary.

		Conversion Rates - Water			Conversion Rates - Sewage	
IDM Development Type	Average Water Consumption Method Adopted	Gross Site Area Water EP/HA (Density Gross)	Gross Floor Area Water EP/HA (Density GFA)	Return to Sewer (%)	Gross Site Area Water EP/HA (Density Gross)	Gross Floor Area Water EP/HA (Density GFA)
Commercial	GFA, 5 th -95 th %ile	-	55.90	0.90	-	50.31
Office	As per Commercial		55.90	0.90		50.31
Warehouse Distribution	As per Commercial		55.90	0.90		50.31
Education	GFA, 5th-95th %ile	-	105.30	0.80	-	84.24
Health	GFA, 5 th -95 th %ile	-	226.50	0.90	-	203.85
Industry Heavy	50% above Light Industrial	-	56.60	0.80	-	45.28
Industry Medium	25% above Light Industrial	-	47.25	0.80	-	37.80
Industry Light	GFA, 5 th -95 th %ile	-	37.80	0.80	-	30.24
Sport Recreation	Gross, 10th-90th %ile	1.05	-	0.90	0.945	-
Rural	Based on Water Meter Consumption	-	-	-	-	-
Retail Services	GFA, 5th-95th %ile	-	97.60	0.90	-	87.84
Showroom Bulk Goods	GFA, 5 th -95 th %ile	-	110.80	0.90	-	99.72
Accommodation	GFA, 5 th -95 th %ile	-	233.90	0.90	-	210.51

Reference: Table 7.2 Development of Infrastructure Demand Model, LWIA 2018 (PI-181).

Figure 3-3 Non-residential conversion rates (Table 7.2 Development of Infrastructure Demand Model)

4499-4651 MOUNT LINDESAY HIGHWAY NORTH MACLEAN | WATER NETWORK ASSESSMENT

Figure 3-4 Concept Masterplan (Watson Young MP01 P10, March 2023)

3.3 PROJECTED CASE

The proposed development and an additional upstream allotment were accounted for as part of the assessed NM1 study catchment aligning with the Logan Water study and associated draft technical memorandum DD8001, with the assumption GFA = 70% of developable area totalling a GFA of 74 ha.

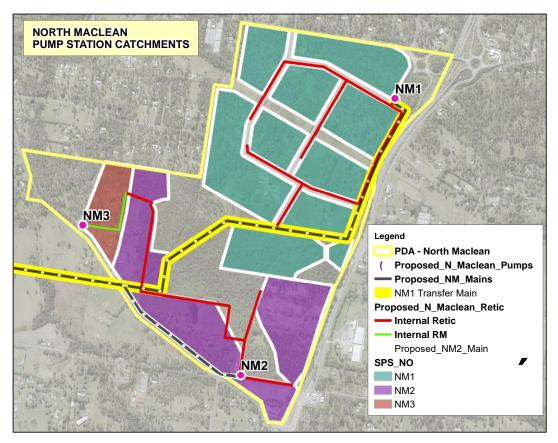


Figure 3-5 Logan Water NM1 Catchment

3.4 ARCADIS CALCULATED DEVELOPMENT LOADING

The demand for the development based on the EP's outlined by Logan Water for Industry Medium and Commercial was applied to the concept development layout completed by Watson Young (MP01 P10, March 2023) to generate a comparison of ultimate demand on the potable water. A 10% contingency has been applied to the demand calculated via this concept development layout for future design flexibility.

Lot 1RP113251 is located immediately south of the site area illustrated in Figure 2-1 and also forms a part of the overall NM1 catchment illustrated in Figure 3-5. This area has also been included in this assessment, with assumed demand for this lot specified below in line with Logan Water demand estimation methodology:

- Lot 1RP113251 Area = 16.0435ha
- Assume 70% GFA = 11.23045Ha GFA
- Corresponding Lot 1 RP113251 EP demand = 425 EPs +10% Contingency = 530.7 EPs

The results of this were then compared against the projected loads completed by Logan Water, included in Table 3-1 below. Refer to Appendix C for further details on EP calculations.

	Study Catchment No	Ultimate Water EPs
Logan Water Projected Loading	NM1	3482
Arcadis Calculated Proposed Loading	NM1	3448
Difference (%)		-1%

Table 3-1 North Maclean PDA – Proposed vs Projected Loads (Medium Industry)

As seen above, the proposed development demand based on the concept lot layout MP01 P10 and the assumed development demand of the southern Lot 1 RP 113251 also forming a part of the NM1 study catchment remains generally in accordance with Logan Water's projected demand.

4 ASSESSMENT SCENARIOS

Four assessment scenarios have been adopted for the purposes of this report.

- Stage 1 This scenario consists of Stage 1 of the proposed development only.
- Stage 1+2 This scenario consists of Stage 1 and Stage 2 of the proposed development.
- Ultimate This scenario consists of the ultimate development internal to the site area (Stages 1+2+3).
- Ultimate + External Lot This scenario consists of the ultimate development internal to the site area plus the external lot immediately south of the development site corresponding to the full area of the NM1 catchment assessed in the Logan Water draft technical memorandum DD8001. A GFA of 11.23 ha has been assumed for this external lot.

Figure 4-1 Water Network Assessment Scenario Areas

5 WATER SUPPLY INFRASTRUCTURE

5.1 EXISTING NETWORK

The North Maclean proposed industrial development is located within the urban catchment and around associated existing water infrastructure operated by Logan Water in the region. Based on the Logan Water Asset Location Data - GIS mapping, below shows the location of the site relative to the existing potable water reticulation network. The following relevant water infrastructure was identified in proximity:

- 200mm DIA watermain along the eastern verge of the Mount Lindesay Highway; and
- 200mm DIA PN16 mPVC main located along the northern verge of Crowson Lane.

Figure 5-1 – Existing Potable Water Infrastructure (Logan Water, June 2022)

5.2 EDQ DCOP, ENDORSED NORTH MACLEAN CONTEXT PLAN & CONNECTIONS

As part of the planning for the Greater Flagstone PDA, EDQ have developed a Development Charges and Offset Plan (DCOP). This document sets out the required charges levied to Developers to contribute towards funding the delivery of required trunk infrastructure for the area. An extract from the DCOP is shown in Figure 5-2 below.

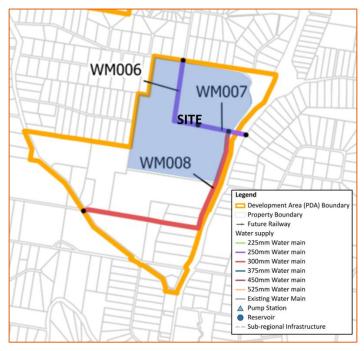


Figure 5-2 – Water Supply Trunk Infrastructure in DCOP

Figure 5-3 shows the endorsed EDQ Sewer and Water plan for the site. As shown in the plan, the development has been approved for connection to the trunk watermains located along Crowson Lane and the Mount Lindesay Highway.

The existing DN200 water main within the northern side of Crowson Lane will be adopted as the connection point for the site.

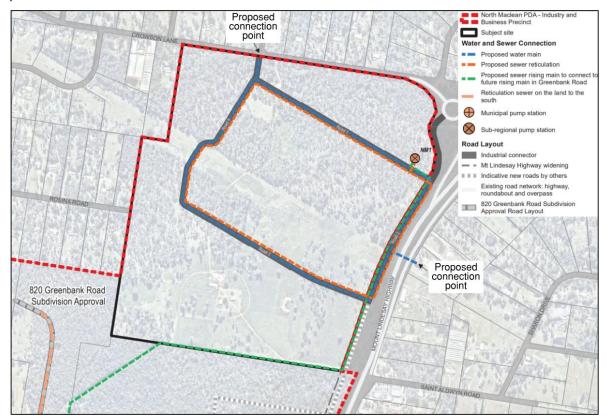


Figure 5-3 – Endorsed EDQ Water & Sewer Context Plan

6 MODELLING ASSUMPTIONS & DSS

The water network modelling was undertaken using Bentley modelling software WaterCAD Connect Edition network and designed using the current Logan City Council Desired Standards of Service 2019 documentation as referenced in the Greater Flagstone PDA IPBR.

- The extent of the network studied is the Logan Water NM1 Catchment Area.
- Colebrook-White equation is used for hydraulic calculations.
- 0.3mm Colebrook-White k value adopted.
- DICL & M-PVC PN20 assumed, as such most conservative IDs of M-PVC mains adopted. DN300 PN20 PVC-M main ID ≈ 306mm, DN250 PN20 M-PVC main ID ≈ 253mm, DN150 PN20 M-PVC main ID ≈ 157mm
- External southern catchment area adopted as 11.23ha GFA
- Allowable head loss design criteria applicable under Peak Hour demand scenario only

Table 6-1 LCC Desired Standard of Service for Water Supply 2019

Service Pressure					
Minimum Operating Pressure @MH	Min. 22 m at the property boundary				
Maximum Operating Pressure	Max. 80m at the property boundary on the reservoir				
Target Pressure	55m at the property boundary				
Fire Fi	ghting				
Commercial / Industrial Fire Flow Demand	30L/s for 4 hours				
Rural Commercial/Industrial	15L/s for 2 hours				
Background Demand Commercial/ Industrial	2/3 PH demand (single fire event only)				
Pipeline	e Design				
	Trunk system:				
Dinalina Conseit / Damuinamenta	MDMM for gravity supply				
Pipeline Capacity Requirements	MDMM over 20hrs for pumped supply				
	Reticulation Mains: MH + fire flow				
Maximum Velocity	2.5m/s				
Item	Value				
Average Day Demand (AD)	190 L/EP/day				
Industry Mean Day Max Month (MDMM)	AD x 1.2				
Industry Max Day (MD)	AD x 1.3				
Industry Max Hour (MH)	AD x 1.7				
Commercial Mean Day Maximum Month (MDMM)	AD x 1.2				
Commercial Max Day (MD)	AD x 1.3				
Commercial Max Hour (MH)	AD x 2.0				
Pipe Friction Loss					

	Dine Meterial	Pipeline Age (years)]
	Pipe Material	< 10	10 to 25	> 25	1
	Asbestos Cement	0.15	0.3	0.3	1
	Plastic (UPVC,	0.06	0.06	0.15	1
Colebrook White k values (mm)	MDPE, Hobas, etc)				
	MSCL/DICL	0.3	0.3	0.6	
	CICL	0.3	0.3	0.6	
Allov					
	(a) 5 m head/km for ≤DN 150 (CIOD) or ≤DN 180 (ISO).				
Design of future infrastructure to be conducted to achieve less than the head losses as	(b) 3 m head/km for ≥DN 200 (CIOD) or ≥DN 250 (ISO).				
indicated	Head loss shall be	calculated hydraulic fo	• .	iter models	or

6.1 PIPE MATERIAL

In accordance with the SEQ IPAM list and confirmed by EDQ, M-PVC and DICL water mains are suitable for use in LCC and the proposed development site.

- Pipes in the road shall be DICL
- Pipe sections under road crossings and industrial/commercial driveways shall be DICL PN35
- Pipes in verges shall be M-PVC pipes minimum PN20

7 POTABLE WATER DEMAND

Table 7-1 below lists the estimated water supply demand generated by the proposed development. This has been calculated in accordance with the LCC Desired Standards of Service 2019 documentation.

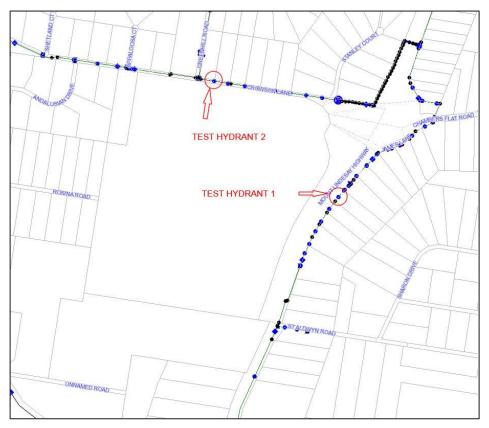

Scenario	Total EP	AD+NRW (L/s)	MDMM+NRW(L/s)	MD+NRW (L/s)	MH+NRW (L/s)	2/3MH + FF (L/s)
Stage 1	1057	2.32	2.73	2.93	3.74	32.49
Stage 1+2	2178	4.79	5.62	6.04	7.70	35.13
Ultimate	2864	6.30	7.39	7.94	10.13	36.75
Ultimate + Southern External Lot	3448	7.58	8.90	9.56	12.19	38.13

Table 7-1 Potable Water Demand Estimate

8 BOUNDARY CONDITION

8.1 HYDRANT PRESSURE AND FLOW MODELLING REPORT - 2021

Flow and pressure modelling was undertaken near the two proposed connection points in the eastern verge of Mt Lindesay Highway and in the northern verge of Crowson Lane (101-109 Crowson Lane) on Test Hydrant WFH019651and Test Hydrant WFH019651 respectively. Figure 8-1 below provides the hydrant locations.

Figure 8-1 Flow Test Hydrant Locations

The Hydrant Curve function is used in the H2OMap network modelling software to simulate an increasing demand scenario in the water supply network with peak hour background demand to assess and evaluate peak hour flow. The residual pressure in the water supply network at the hydrant is calculated by the model for each increase in flow. The report notes it is strongly suggested that field tests are conducted to verify the theoretical results which has been undertaken and further discussed in Section 8.2 below.

The hydraulic modelling results are presented in Table 8-1 below.

Table 8-1 Hydrant Test Results – 2021 Modelling

Normal Supply Conditions / (Peak Day Analysis)					
Available Flow (L/s)	Test Hydrant 1 – Residual Pressure (m)	Test Hydrant 2 – Residual Pressure (m)			
0.00	54.14	42.31			
5.00	49.66	40.56			
10.00	48.19	39.00			
15.00	46.33	37.40			
20.00	44.08	35.40			
25.00	41.51	33.13			
30.00	38.64	30.34			
35.00	35.47	27.94			
40.00	32.03	25.05			
45.00	28.34	22.00			
50.00	24.34	18.76			

8.2 FLOW & PRESSURE TESTING RESULTS – 2022

Flow and pressure field testing was undertaken in October 2022 at multiple test hydrant location points around Crowson Lane and Mt Lindesay Highway North and South of the site. The field tests are undertaken to cross check, evaluate and verify theoretical outcomes. Figure 8-2 and Figure 8-3 below illustrates the hydrant testing locations.

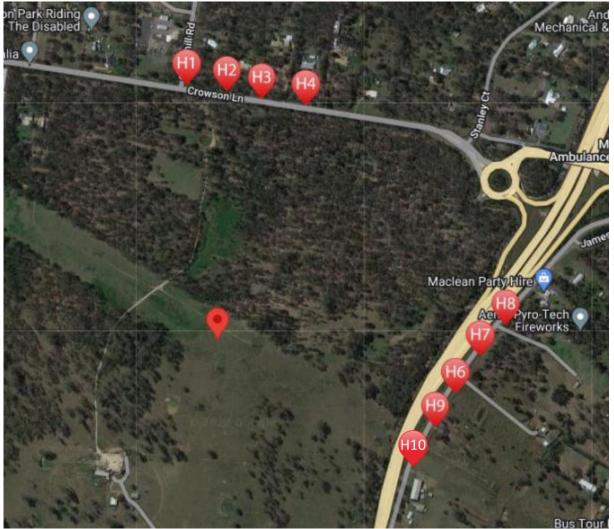


Figure 8-2 Flow Test Hydrant Locations – Crowson Lane (H1-4) & Mt Lindesay Hwy North (H6-10)

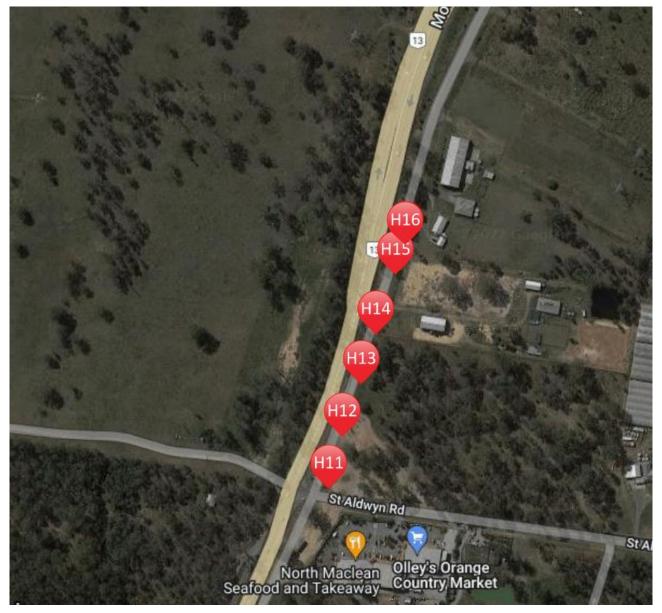


Figure 8-3 Flow Test Hydrant Locations – Mt Lindesay Highway South (H11-16)

The flow and pressure results for each of the number of tests performed at various test hydrant locations is summarised in Table 8-2 below.

Test Hydrants H1-4 Crowson Lane – Residual Pressure (m)		Test Hydrants H6-10 Mt Lindesay Highway North – Residual Pressure (m)		Test Hydrants H11-16 Mt Lindesay Highway South – Residual Pressure (m)	
Flow (L/s)	Hydrant Residual Pressure (m)	Flow (L/s)	Hydrant Residual Pressure (m)	Flow (L/s)	Hydrant Residual Pressure (m)
0	66.4	0	74.3	0	71.4
15	64.2	15	70.3	15	63.3
30	58.8	30	61.2	30	54.8
45	52.8	45	49.0	45	38.0
60	46.9	56.9	32.5	52.2	26.8
65	45.8				
75	40.1				
77.6	38.5				

Table 8-2 Hydrant Test Results Summary – 2022 Testing

8.3 FLOW AND PRESSURE RESULTS BOUNDARY HGL COMPARISON

A comparison of the calculated boundary HGLs based on the two available 2021 and 2022 flow and pressure results and the development demands is provided in Table 8-3 below. These results show that the 2022 hydrant field testing yields significantly higher boundary HGLs than the 2021 flow and pressure modelling report by LCC. As such, 2021 boundary HGLs have been adopted for the purposes of this assessment, remaining conservative and aligning with LCC modelling for the area.

	Location 1 – Crowson Lane		Location 2 – Mt Lindesay Highway North		Location 3 – Mt Lindesay Highway South	
Scenario	2021 Modelling Report HGL (m)	2022 Hydrant Testing HGL (m)	2021 Modelling Report HGL (m)	2022 Hydrant Testing HGL (m)	2021 Modelling Report HGL (m)	2022 Hydrant Testing HGL (m)
MH Stage 1	71.68	96.60	72.39	94.67	-	89.21
FF Stage 1	58.89	88.71	57.77	80.79	-	72.37
MH Stage 1+2	70.47	95.77	70.77	93.89	-	87.15
FF Ultimate	58.45	87.77	56.09	78.56	-	69.98
MH Ultimate	69.99	95.21	69.71	93.23	-	85.94
FF Ultimate	57.55	87.18	55.04	77.11	-	68.38
MH ULTIMATE + EXT	68.94	94.72	68.78	92.57	-	84.93
FF ULTIMATE + EXT	56.76	86.66	54.13	75.84	-	66.94

Table 8-3 Boundary HGL Comparison

Note – the above table includes HGL – whereas Table 8-2 specifies pressure head.

9 CONCEPT ULTIMATE INTERNAL WATER NETWORK LAYOUT & CONNECTIONS

The concept ultimate internal water network layout and sizing adopted for this assessment in illustrated in Figure 9-1 below.

This involves connection to the existing DN200 water main within the northern verge of Crowson Lane as per the endorsed EDQ water & sewer context plan, with a DN250 water main extended across Crowson Lane to the site in accordance with EDQ DCOP mapping.

The existing DN200 water main within the northern side of Crowson Lane will be adopted as the connection point for the site to be made as part of Stage 1 works.

Parallel DN150 water mains have been modelled for the internal reticulation to the proposed development site, with a separate main modelled in each verge. A DN250 trunk water main has been modelled along the southern internal road alignment to adhere with DCOP planning, with lot connections to be made directly to this DN250 main for adjacent lots and confirmed by EDQ. A DN300 water main has been modelled continuing south from the DN250 at the intersection of the Mt Lindesay Highway and the southern site entrance to cater for future southern external areas in accordance with EDQ DCOP mapping. The external demand of the southern Lot 1RP113251 has been applied at the end of this modelled DN300 main, however it is noted that this DN300 extension will not be constructed by Charter Hall as part of the current proposed development works.

A second connection is to be made to the existing DN200 water main within the eastern verge of the Mt Lindesay Hwy in accordance with the approved EDQ DCOP and provides redundancy of supply to the supply area. It is noted however that this connection is not required to allow the proposed development to meet the required performance DSS and is to be isolated under normal operating conditions.

4499-4651 MOUNT LINDESAY HIGHWAY NORTH MACLEAN | WATER NETWORK ASSESSMENT

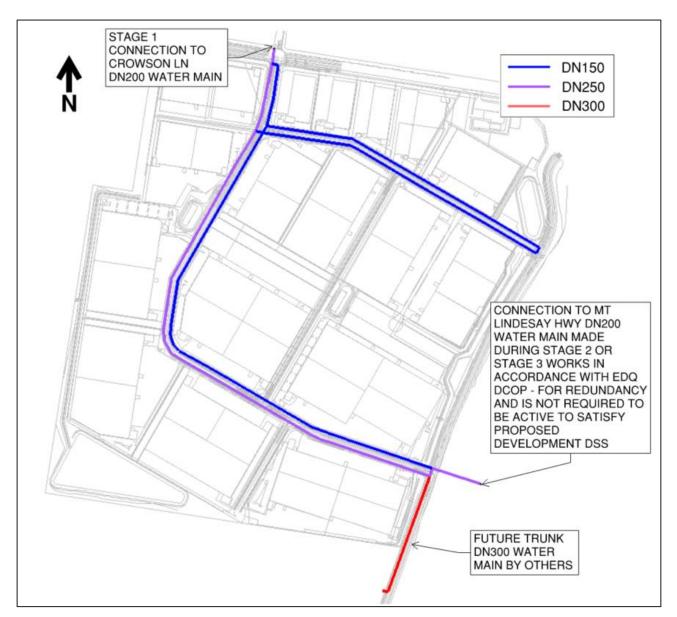


Figure 9-1 Concept Ultimate Internal Water Network Layout

9.1 STAGE 1 INTERNAL WATER NETWORK LAYOUT

As part of Stage 1 works, a new DN250 water main connection will be undertaken to the existing DN200 main within the northern verge of Crowson Ln adjacent to the future northern internal road connection. This DN250 connection will extend south across Crowson Ln to the northern site boundary and forms the initial section of the DCOP planning DN250 trunk water main alignment.

A DN150 reticulation water main has been modelled from this future DN250 site connection extending south to the northern internal road alignment, to supply parallel DN150 mains within the northern and southern verges of the northern internal road. A DN150 cross-connection has been included at the end of the parallel DN150 mains to mitigate dead ends. The concept Stage 1 internal water network layout is illustrated in Figure 9-2 below.

4499-4651 MOUNT LINDESAY HIGHWAY NORTH MACLEAN | WATER NETWORK ASSESSMENT

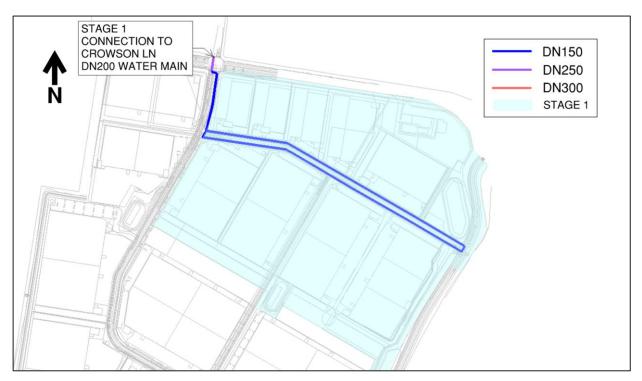


Figure 9-2 Concept Stage 1 Internal Water Network Layout

9.2 STAGE 2 INTERNAL WATER NETWORK LAYOUT

As part of Stage 2 works, a second DN250 connection will be undertaken to the existing DN200 water main within the eastern verge of the Mt Lindesay Hwy. A new trunk DN250 water main will be constructed to the eastern service road and continue south along the southern internal road servicing the Stage 2 area. A DN150 reticulation main will be constructed within the northern verge of the southern internal road. The proposed water network within Stage 3 will be constructed during Stage 2 works to provide the full looped connection through Stage 3 to allow the development to meet the hydraulic performance DSS. This also provides the complete trunk DN250 water main alignment in accordance with EDQ DCOP planning.

A DN150 main will also be constructed north along the eastern service road to connect to the DN150 water network within Stage 1 through Stage 3. The concept Stage 1-2 internal water network layout is illustrated in Figure 9-3 below.

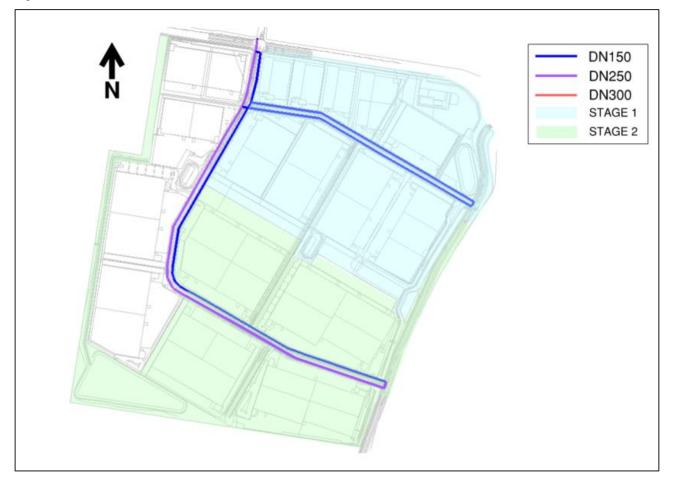


Figure 9-3 Concept Stage 1-2 Internal Water Network Layout

9.3 STAGE 3 INTERNAL WATER NETWORK LAYOUT

With the Stage 3 internal water network proposed for construction during Stage 2, no additional elements will be required to the internal water network as part of Stage 3 works. The concept Stage 1-3 internal water network layout is illustrated in Figure 9-4 below.



Figure 9-4 Concept Stage 1-3 Internal Water Network Layout

9.4 DMA BOUNDARY VALVE

Logan City Council has advised that the intent for this site is to form part of a single future District Metered Area (DMA). To this end, a boundary valve assembly is to be implemented at the proposed connection to the existing network within Crowson Lane, to be designed and constructed in accordance with SEQ drinking water supply drawings SEQ-WAT-1310-5 to SEQ-WAT-1310-10. Refer to the water layout plan included in Appendix B for concept locations of the boundary valves.

10 RESULTS AND DISCUSSION

The assessment modelling results across the four assessment scenarios are summarised in Table 10-1 below. Refer to Appendix C for modelling results across both assessment scenarios and model junctions.

	Standard Flow Sim	ulation	Fire Flow Simulation		
Scenario	enario Min Pressure (m)		Min Residual Pressure (m)	Maximum Velocity (m/s)	
Stage 1	39.6	47.4	25.0	1.71	
Stage 1+2	38.4	46.8	24.6	1.57	
Ultimate	37.6	46.3	23.7	1.57	
Ultimate + External	36.8	45.9	21.8	1.71	

As observed in the above summary, network hydraulic performance meets the specified DSS across all assessed staging scenarios.

11 ALTERNATIVE SUPPLY ARRANGEMENT – STAGE 2 SERVICE PRIOR TO STAGE 3 NETWORK

An alternative supply arrangement is explored below to demonstrate the performance of the internal water network in the unlikely event that Stage 2 is constructed and serviced prior to the construction of the water network within Stage 3, illustrated in Figure 11-1 below.

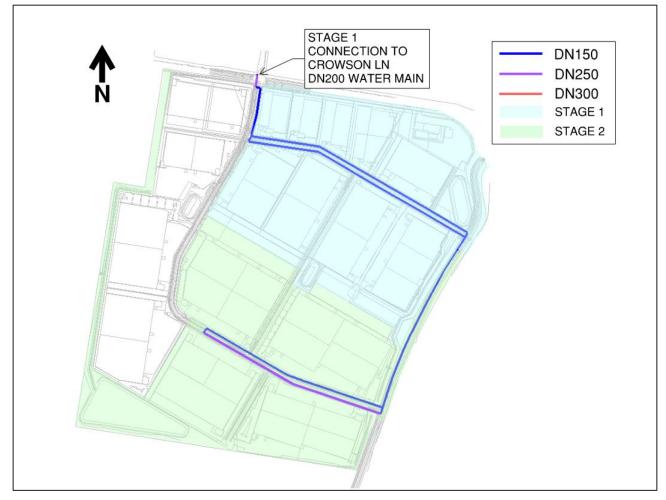
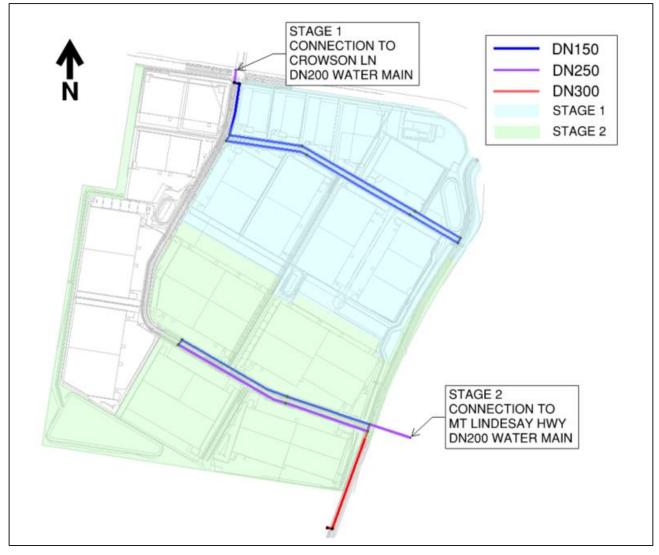


Figure 11-1 Alternative Supply Arrangement – Crowson Lane Only Internal Water Network Layout

As per Table 11-1 below, this scenario results in a minimum residual pressure DSS non-compliance under fire flow simulation of 4.3m (7.7m below DSS).


 Table 11-1 Alternate Supply Arrangement Water Network Modelling Results Summary – Crowson Ln

 Connection Only

	Standard Flow S	imulation	Fire Flow Simulation		
Scenario	Min Pressure (m)	Max Pressure (m)	Min Residual Pressure (m)	Maximum Velocity (m/s)	
Stage 1+2 – Crowson Ln Connection Only	38.4	46.6	4.3	1.84	

11.1 CROWSON LANE + MT LINDESAY HIGHWAY CONNECTIONS

To allow for adequate service to Stage 2 of the development prior to the construction of the water network within Stage 3, a second connection to the existing water network within Mt Lindesay Hwy is required (illustrated in Figure 11-2 below).

Figure 11-2 Alternative Supply Arrangement – Crowson Lane + Mt Lindesay Hwy Internal Water Network Layout

As per Table 11-2 below, this scenario provides adequate network performance meeting the specified DSS. Private pressure relief valves are proposed at the lot property connections in lieu of an additional DMA boundary valve assembly.

Table 11-2 Alternate Supply Arrangement Water Network Modelling Results Summary – Crowson Ln + Mt Lindesay Hwy Connections

	Standard Flow S	imulation	Fire Flow Simulation	
Scenario	Min Pressure (m)	Max Pressure (m)	Min Residual Pressure (m)	Maximum Velocity (m/s)
Stage 1+2 – Crowson Ln + Mt Lindesay Hwy Connections	38.4	46.9	17.3	1.71

12 CONCLUSION

This Water Network Capacity Assessment shows that the proposed development can be adequately serviced via connection to the existing network within Crowson Lane. Furthermore, adequate provision has been made for the external Lot to the south. A second connection is to be made to the existing DN200 water main within the eastern verge of the Mt Lindesay Hwy during Stage 2 or Stage 3 works in accordance with the approved EDQ DCOP and provides redundancy of supply to the supply area. It is noted that this connection is not required to allow the proposed development to meet the required performance DSS and is to be isolated under normal operating conditions.

An alternative supply arrangement is further investigated in this report which explores the impacts to the internal network DSS in the unlikely event that the internal water network within Stage 3 is not constructed prior to Stage 2 operation. This alternative supply arrangement requires an additional active connection to be made to the existing DN200 water network within Mt Lindesay Hwy and corresponding boundary valve assembly.

The water network has been designed in accordance with LCC Desired Standards of Service 2019 in accordance with the Greater Flagstone PDA Infrastructure Planning and Background Report.

Further changes and requirements are subject to detailed design not covered as a part of the present report. A detailed assessment of the performance and design requirements of this proposed potable water network will be required as design progresses to ensure compliance with all relevant criteria.

APPENDIX A

Development Layout Plans

Notes

1. Any licence, express or implied, to use this document for any purpose whatsoever is restricted to the terms of the agreement or implied agreement between Wolter Consulting Group and the instructing party.

2. Design subject to local authority approval & detailed engineering requirements, areas and dimensions are approximate only and are subject to survey. Therefore this drawing is not to be used for engineering design.

3. Cadastral data supplied by others and is approximate only.

4. Earthworks for Sewer Rising Main and full service road will be completed with Stage 1.

5. Indicative road horizontal design, subject to biopods and engineering review.

6. This note is an integral part of this plan. This plan may not be reproduced without this notation being included.

	Staging	Sketch F
matura	4499-4651	Mount Lindesa

Description Local Authority

Plan 4499-4651 Mount Lindesay Highway Lot 39 on SP258739 Logan City

CLIENT Charter Hall Group

DRAWING NO. **VERSION** 22-0007P/01-03 Ε DATE DRAWN SHEET NO. 1 of 1 14-08-2023

Indicative Temporary Turnaround - Stage 1

Indicative Temporary Turnaround - Stage 2

Legend

Site Boundary

Stage Boundary

Stage 1

Stage 2

Stage 3

—— RM —— Sewer Rising Main

LEGEND

	HARDSTAND
	CAR PARK
	COLLECTOR ROAD
	CRUSHED ROCK TO FIRE ACCESS TRACK
	AREA OF GRASS / LANDSCAPING
	BIO DETENTION, GREEN CORRIDOR, STORMWATER EASEMENT
	WAREHOUSE
	OFFICE
	STAFF OUTDOOR
	AWNING
\bigcirc	ESTATE ROAD CONNECTION TO EXTERNAL ROAD NETWORK
$\checkmark \lor$	TRUCK ENTRY/EXIT
	POWER EASEMENT MAINTENANCE ACCESS POINT
	ESTATE BOUNDARY LINE
_ · _ · _	LOT BOUNDARY LINE
	BUILDING SETBACK LINE
	LANDSCAPE SETBACK LINE
	FENCE LINE
	RETAINING WALL

PARKING	PROVISION

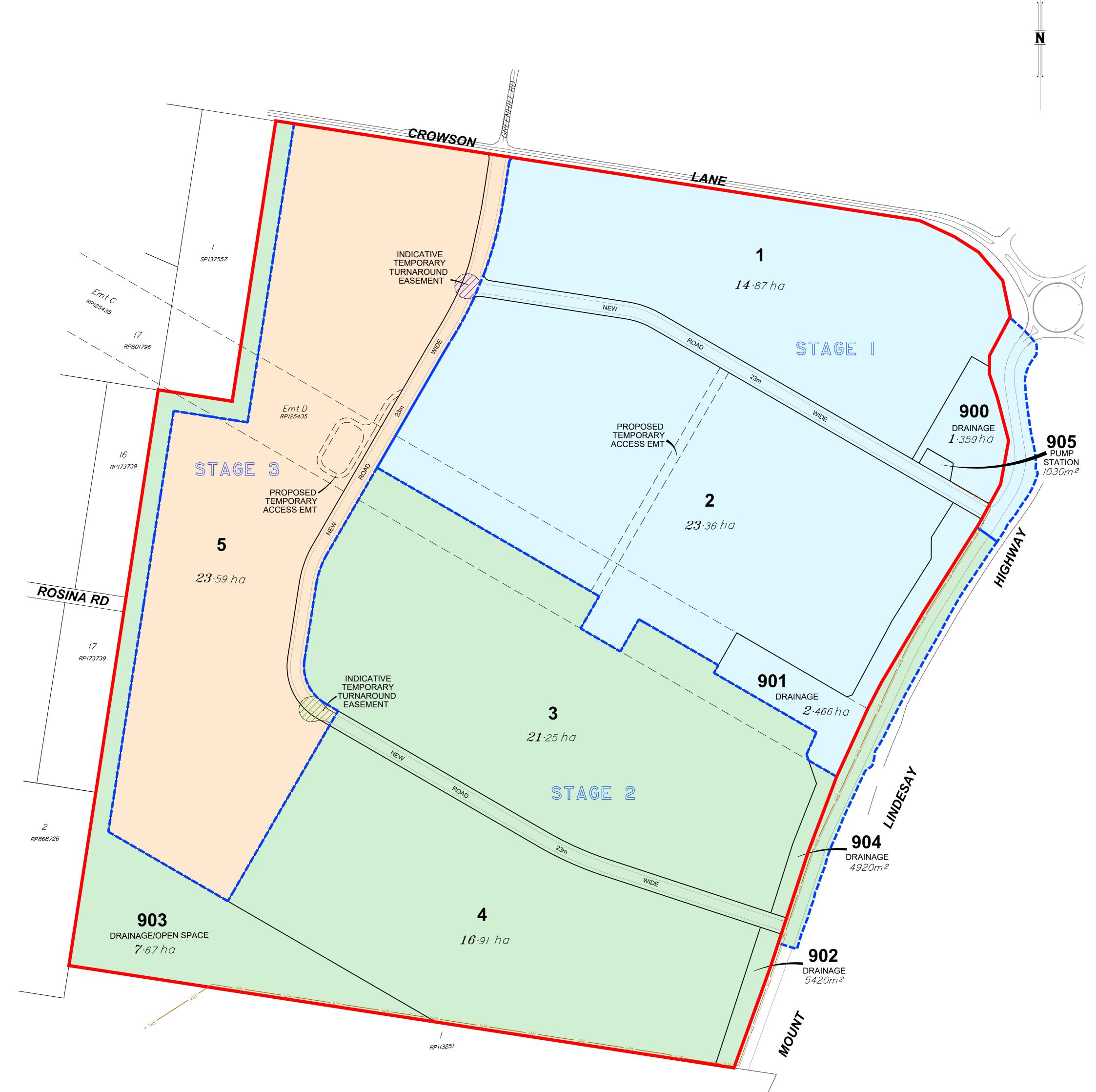
SITE	PARK	(ING RATIO
WAREHOUSES	0.66 (appro	ximately 1/150m ²)
PARKING TOTAL	REQUIRED 3570	PROVIDED 3915
activity/amenities	TBC	
NOTE : Ratio applied to calculate combined facility area including v		

DEVELOPMENT ANALYSIS

DEVE	LOPMENT ANA	ALYSIS
LOT 1 LOT 2 WAREHOUS	SE 1 CLD. 100m² DOCK OFFICE)	30,990m² 31,274m² 20,000m ² 1,100m ²
LOT 3		24,981m ²
WAREHOUS		6,600m ² 300m ²
WAREHOUS OFFICE	DE 2	5,850m ² 300m ²
LOT 4 WAREHOUS	SE 1	17,479m² 7,950m ²
OFFICE LOT 5		400m ² 15,005m ²
WAREHOUS OFFICE	SE 1	6,850m² 350m²
LOT 6 WAREHOUS OFFICE	SE 1	15,503m² 6,550m² 300m²
LOT 7 WAREHOUS	SE 1A	49,645m² 12,100m ²
OFFICE (INC	CLD. 100m ² DOCK OFFICE)	600m ²
	CLD. 100m ² DOCK OFFICE)	7,000m ² 400m ²
WAREHOUS OFFICE (INC	SE 2B CLD. 100m² DOCK OFFICE)	5,800m² 400m²
LOT 8 WAREHOUS	SE 1A	39,921m² 9,750m ²
OFFICE (INC WAREHOUS	CLD. 100m ² DOCK OFFICE)	600m² 9,250m²
OFFICE (INC	CLD. 100m ² DOCK OFFICE)	600m²
LOT 9 WAREHOUS		108,081m² 14,100m ² 800m ²
WAREHOUS		14,300m ²
WAREHOUS		800m ² 15,900m ²
WAREHOUS		900m² 15,900m²
OFFICE (INC	CLD. 100m ² DOCK OFFICE)	900m ² 120,643m ²
WAREHOUS	E 1A CLD. 100m² DOCK OFFICE)	19,300m ² 1000m ²
WAREHOUS		19,300m ² 1000m ²
WAREHOUS	SE 2A	10,700m ² 700m ²
WAREHOUS		10,200m ²
OFFICE (INC WAREHOUS	CLD. 100m ² DOCK OFFICE) SE 2C	600m² 9,300m²
OFFICE (INC	CLD. 100m ² DOCK OFFICE)	700m ²
WAREHOUS		109,982m² 17,650m ²
WAREHOUS		900m² 17,800m² 900m²
WAREHOUS		900m² 13,200m² 800m²
WAREHOUS	CLD. 100m ² DOCK OFFICE) E 1D CLD. 100m ² DOCK OFFICE)	13,200m ² 800m ²
LOT 12 WAREHOUS	SE 1A	98,224m² 15,700m ²
WAREHOUS		800m² 14,350m²
OFFICE (INC WAREHOUS	CLD. 100m ² DOCK OFFICE) SE 1C	800m² 12,400m²
OFFICE (INC WAREHOUS	CLD. 100m ² DOCK OFFICE)	800m² 12,400m²
	CLD. 100m ² DOCK OFFICE)	800m ²
LOT 13 WAREHOUS	SE 1A CLD. 100m² DOCK OFFICE)	142,280m² 20,550m ² 1100m ²
WAREHOUS		19,850m ² 1100m ²
WAREHOUS	,	20,800m ² 1100m ²
WAREHOUS		20,000m ² 1100m ²
LOT 14		80,077m ²
WAREHOUS OFFICE (INC WAREHOUS	CLD. 100m ² DOCK OFFICE)	12,100m ² 700m ² 12,100m ²
WAREHOUS OFFICE (INC WAREHOUS	CLD. 100m ² DOCK OFFICE)	12,100m² 700m² 24,050m²
OFFICE (INC	CLD. 100m ² DOCK OFFICE)	1300m ²
LOT 15 WAREHOUS	SE 1A	82,432m² 10,350m ²
OFFICE WAREHOUS OFFICE	SE 1B	500m ² 9,050m ² 500m ²
WAREHOUS	SE 1C	12,250m ²
OFFICE WAREHOUS	SE 1D	600m ² 7,850m ² 400m ²
-	DG AREA	400m ² 540,800m ²
(LOT 1 Amer <u>SITE COV</u>	nities not included) ERAGE	
TOTAL SI	TE AREA	1,177,359m ²
INTERNAL BIO-DETE	- ROADS NTION BASIN	71,013m ² 14,302m ²
BIO-DIVER	RSITY+25m BUFFER	76,670m ²
	ATER EASEMENT 1 ATER EASEMENTS (2)	5,790m ² 26,074m ²
ROAD WI	()	16,992m ²
TOTAL DE	E VELOPABLE AREA ERAGE	966,518m ² 55.95%
ATE:	REVISION	
ATE: .06.2022 .08.2022	REVISION: PRELIMINARY ISSUE CIVIL & LOT ALIGNMENT ISSUE	BY: CHK: JWK GP JWK GP
.09.2022	CIVIL UPDATES	JWK GP
.09.2022	TRUCK MOVEMENT UPDATES	JWK GP

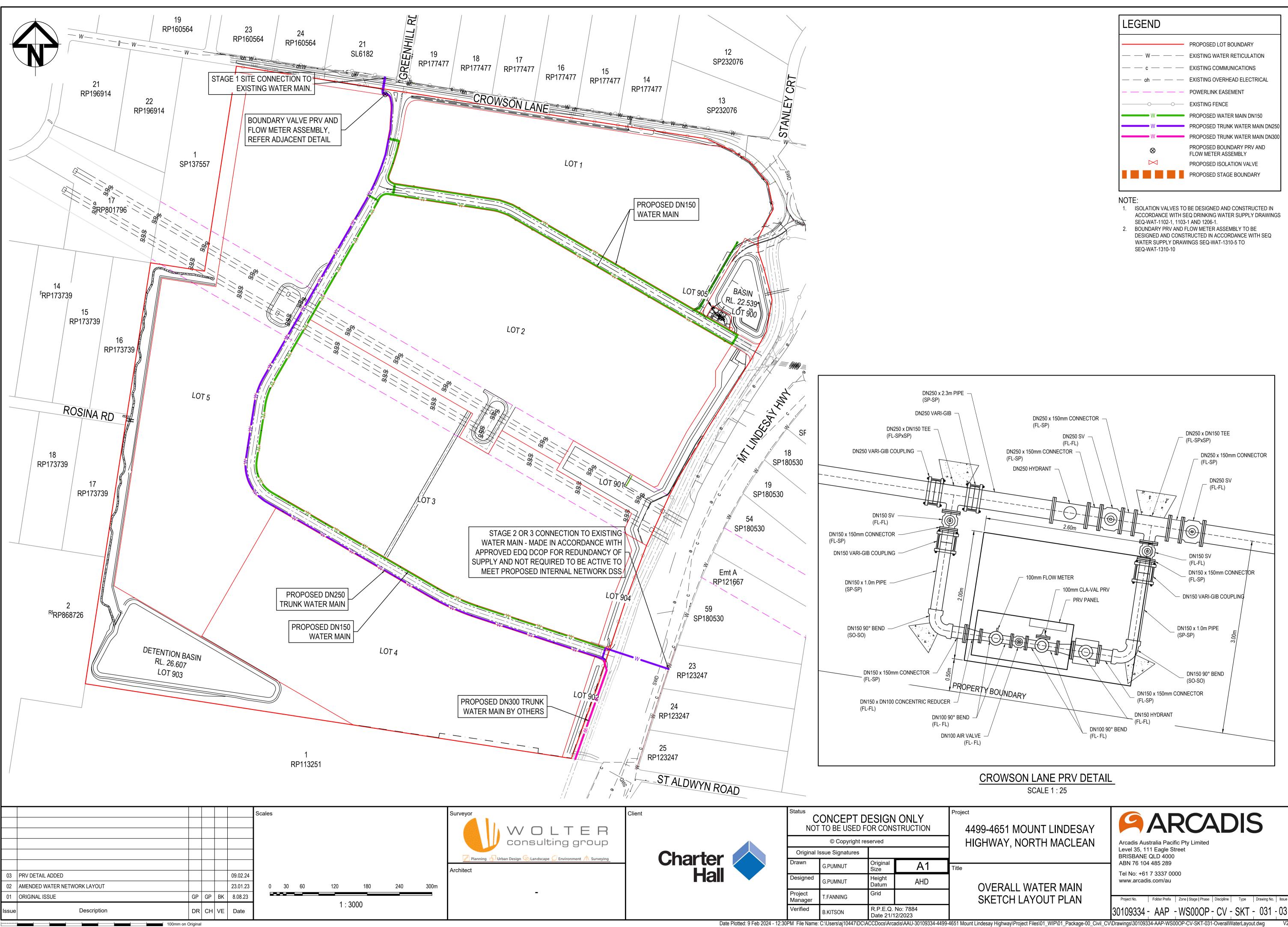
All areas indicated are indicative for design and planning purposes only and should not be used for any contractual reasons without verification by a licensed surveyor or further design development being completed.

Watson Young Architects P/L Melbourne | Perth | Sydney 03 9516 8555 ACN: 111398700 8 Grattan Street Prahran VIC 3181 | e: info@watsonyoung.com.au | w: watsonyoung.com.au © Watson Young Architects. This drawing is protected by copyright.



Appendix B Plan of Reconfiguration

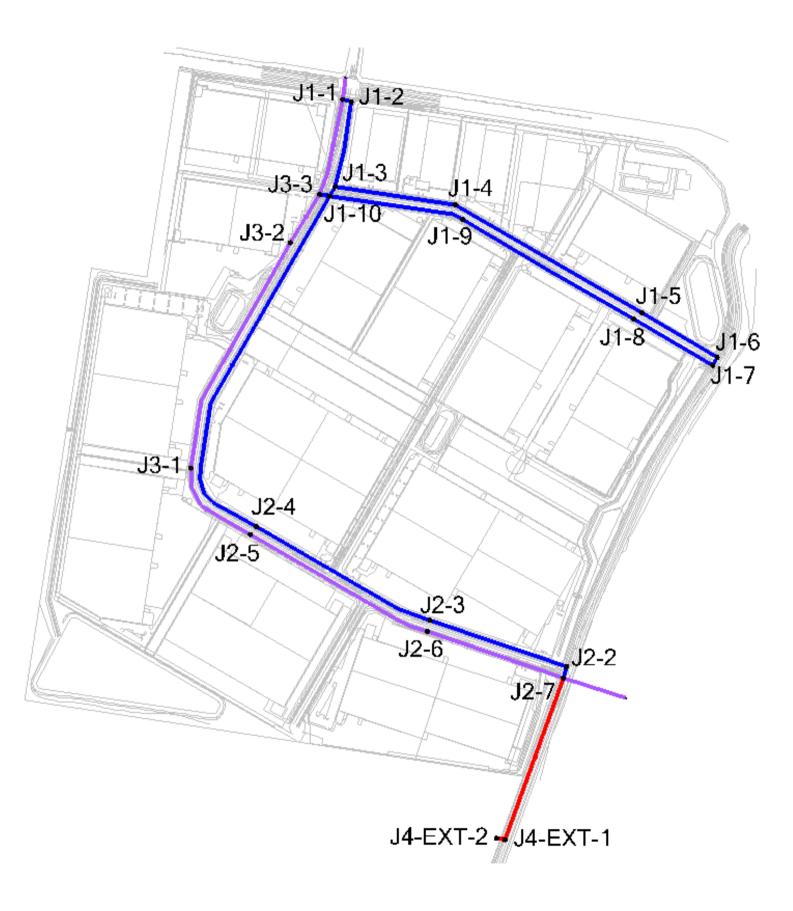
Notes 1. Any licence, express or implied, to use this document for any purpose whatsoever is restricted to the terms of the agreement or implied agreement between Wolter						PLANS AND DOCUMENTS referred to in the PDA DEVELOPMENT APPROVAL Approval no.: DEV2018/961/8 Date: 27/09/2023 Date: 27/09/2023
Consulting Group and the instructing party.						Site Boundary
 Design subject to local authority approval & detailed engineering requirements, areas and dimensions 						Stage Boundary
are approximate only and are subject to survey. Therefore this drawing is not to be used for engineering design.						<u>Table of Development</u> Gross area of subject land117.9 ha
3. Cadastral data supplied by others and is approximate only.						Area of proposed park, drainage and open space12.6 ha (Including pump station)
4. Indicative road horizontal design, subject to biopods and engineering review.						Area of new road5.32 ha Length of new road2299m Net area of subject land99.98 ha (Excluding park & open space)
5. This note is an integral part of this plan. This plan may not be reproduced without this notation being included.						Number of proposed lots
		Plan of	Reconfigura	tion		DRAWING NO. VERSION
WOLTER consulting group	Scale 1:2500 @ A1 - Lengths are in metres.		Mount Lindesay Hig		CLIENT Charter Hall	22-0007P/01-02 E
	20 0 20 40 60 80 100 120 140 160 180 200 220	Description Local Authority	Lot 39 on SP2 Loga		Group	DATE DRAWN SHEET NO. 14-08-2023 1 of 1



Notes 1. Any licence, express or implied, to use this document for any purpose whatsoever is restricted to the terms of the agreement or implied agreement between Wolter Consulting Group and the instructing party.							PLANS AND DOCU referred to in th PDA DEVELOPMENT Approval no.: DEV2018 Date: 27/09/202	he APPROVAL / Control / Co
2. Design subject to local authority approval & detailed engineering requirements, areas and dimensions are approximate only and are subject to survey. Therefore this drawing is not to be used for engineering design.						Lege	Site Boundary Stage Boundary	
3. Cadastral data supplied by others and is approximate only.							Stage 1	y Turnaround – Stage 1
4. Earthworks for Sewer Rising Main and full service road will be completed with Stage 1.							Stage 2	,
5. Indicative road horizontal design, subject to biopods and engineering review.								y Turnaround - Stage 2
6. This note is an integral part of this plan. This plan may not be reproduced without this notation being included.							Sewer Rising Main	
WOLTER consulting group	Scale 1:2500 @ A1 - Lengths are in metres.	Staging 4499-4651		n Plan Idesay Highway	CLIENT Charter Hall		AWING NO.	VERSION 3 E
	luuluul	Description Local Authority	Lot	39 on SP258739 Logan City	Group		TE DRAWN -08-2023	SHEET NO. 1 of 1

APPENDIX B

Concept Water Network Sizing and Layout Plan



LEGEND	
	PROPOSED LOT BOUNDARY
— — W— — —	EXISTING WATER RETICULATION
c	EXISTING COMMUNICATIONS
— — oh — — —	EXISTING OVERHEAD ELECTRICAL
	POWERLINK EASEMENT
OO	EXISTING FENCE
	PROPOSED WATER MAIN DN150
	PROPOSED TRUNK WATER MAIN DN250
	PROPOSED TRUNK WATER MAIN DN300
\otimes	PROPOSED BOUNDARY PRV AND FLOW METER ASSEMBLY
\boxtimes	PROPOSED ISOLATION VALVE
	PROPOSED STAGE BOUNDARY

APPENDIX C

EP Water Demand Calculations & WaterCAD Modelling Results

WATER NETWORK MODEL JUNCTION LABELLING PLAN

PROJECT: PROJECT NUMBER: DATE:	North Maclean 30109334 23/08/2023	Author: Software:	MC WaterCad						WaterCAD Connect	Edition 10.01.0	1.04		AR	
STAGE	Lot Number	Lot Area (Ha)	Lot Number	Med Industrial Site (GFA)	Service Station (ha)	EP	10% Contingency	Total Eps	AD (L/s)	NRW (L/s)	MDMM (L/s)	PD (L/s)	PH (L/s)	PH+NRW Design Flow (L/s)
1	Lot 1	3.099	Lot 1		0.5	49	5	54	0.10	0.02	0.12	0.13	0.17	0.19
1	Lot 2	3.1274	Lot 2	2.11		100	10	110	0.21	0.03	0.25	0.27	0.36	0.39
1	Lot 3	2.4981	Lot 3	1.305		62	6	68	0.13	0.02	0.16	0.17	0.22	0.24
1	Lot 4	1.7479	Lot 4	0.835		39	4	43	0.08	0.01	0.10	0.11	0.14	0.15
1	Lot 5	1.5005	Lot 5	0.72		34	3	37	0.07	0.01	0.09	0.09	0.12	0.13
1	Lot 6	1.5503	Lot 6	0.685		32	3	36	0.07	0.01	0.08	0.09	0.12	0.13
1	Lot 9	10.8081	Lot 9	6.36		301	30	331	0.63	0.10	0.76	0.82	1.07	1.17
1	Lot 10	12.0643	Lot 10	7.28		344	34	378	0.72	0.11	0.87	0.94	1.23	1.34
2	Lot 11	10.9982	Lot 11	6.525		308	31	339	0.65	0.10	0.78	0.84	1.10	1.20
2	Lot 12	9.8224	Lot 12	5.805		274	27	302	0.58	0.09	0.69	0.75	0.98	1.07
2	Lot 14	8.0077	Lot 14	5.095		241	24	265	0.51	0.08	0.61	0.66	0.86	0.94
2	Lot 15	8.2432	Lot 15	4.15		196	20	216	0.41	0.06	0.49	0.54	0.70	0.76
3	Lot 7	4.9645	Lot 7	2.63		124	12	137	0.26	0.04	0.31	0.34	0.44	0.48
3	Lot 8	3.9921	Lot 8	2.02		95	10	105	0.20	0.03	0.24	0.26	0.34	0.37
3	Lot 13	14.228	Lot 13	8.56		404	40	445	0.85	0.13	1.02	1.10	1.44	1.57
4	External Lot	16.0435	External Lot	11.23045		531	53	584	1.11	0.17	1.34	1.45	1.90	2.06
Total				65.31045		3135	313	3448	6.59	1.00	7.90	8.56	11.19	12.19

PROJECT:	30109334	Author: Software:	Mike Cazeres WaterCAD Connec	t Edition			
DATE: ULTIMATE	21/01/2024 • EXTERNAL SCENA	RIO MODELLING R	ESULTS	ARC		in & Consultancy itural and assets	
		STANDA	RD FLOW		FI	RE FLOW	
ELEVATION (m)	JUNCTION LABEL NUMBER	MIN. PRESSURE (PH) (m)	MAX. PRESSURE (AD) (m)	FLOW NEEDED (L/s)	SATISFIES FF	MIN. RESIDUAL PRESSURE (m)	MAX. VELOCITY (m/s)
32.0	J1-1	36.85	38.43	30.00	TRUE	24.40	1.36
30.5	J1-10	38.32	39.91	30.00	TRUE	24.91	1.36
32.0	J1-2	36.85	38.43	30.00	TRUE	24.04	1.71
30.5	J1-3	38.32	39.91	30.00	TRUE	24.87	1.36
27.5	J1-4	41.29	42.9	30.00	TRUE	25.52	1.36
25.0	J1-5	43.77	45.39	30.00	TRUE	26.35	1.36
24.5	J1-6	44.27	45.88	30.00	TRUE	26.70	1.36
25.0	J1-7	43.77	45.38	30.00	TRUE	26.19	1.36
25.5	J1-8	43.27	44.89	30.00	TRUE	25.81	1.36
27.5	J1-9	41.28	42.89	30.00	TRUE	25.27	1.36
25.5	J2-2	43.25	44.87	30.00	TRUE	27.81	1.36
27.0	J2-3	41.75	43.38	30.00	TRUE	24.80	1.36
29.5	J2-4	39.26	40.88	30.00	TRUE	21.81	1.36
29.5	J2-5	39.27	40.89	30.00	TRUE	24.57	1.36
27.0	J2-6	41.75	43.38	30.00	TRUE	26.71	1.36
25.5	J2-7	43.25	44.87	30.00	TRUE	27.99	1.36
30.5	J3-1	38.28	39.89	30.00	TRUE	23.77	1.36
32.0	J3-2	36.81	38.41	30.00	TRUE	22.88	1.36
31.0	J3-3	37.82	39.41	30.00	TRUE	24.52	1.36
31.0	J4-EXT-1	37.76	39.38	30.00	TRUE	22.30	1.36
31.0	J4-EXT-2	37.76	39.38	30.00	TRUE	22.28	1.36

PROJECT:	30109334	Author: Software:	Mike Cazeres WaterCAD Connec	t Edition			
DATE: ULT	21/01/2024 IMATE SCENARIO MO	DELLING RESULTS					
		STANDA	RD FLOW		FII	RE FLOW	
ELEVATION (m)	JUNCTION LABEL NUMBER	MIN. PRESSURE (PH) (m)	MAX. PRESSURE (AD) (m)	FLOW NEEDED (L/s)	SATISFIES FF	MIN. RESIDUAL PRESSURE (m)	MAX. VELOCITY (m/s)
32.0	J1-1	37.58	38.83	30.00	TRUE	25.41	0.73
30.5	J1-10	39.05	40.31	30.00	TRUE	26.49	1.12
32.0	J1-2	37.57	38.83	30.00	TRUE	25.20	1.29
30.5	J1-3	39.05	40.31	30.00	TRUE	26.40	1.05
27.5	J1-4	42.02	43.3	30.00	TRUE	27.07	1.17
25.0	J1-5	44.5	45.79	30.00	TRUE	27.92	1.10
24.5	J1-6	45	46.29	30.00	TRUE	28.26	1.10
25.0	J1-7	44.5	45.79	30.00	TRUE	27.76	1.10
25.5	J1-8	44	45.29	30.00	TRUE	27.38	1.10
27.5	J1-9	42.01	43.3	30.00	TRUE	26.85	1.17
25.5	J2-2	44.01	45.29	30.00	TRUE	29.88	1.23
27.0	J2-3	42.5	43.79	30.00	TRUE	26.75	1.02
29.5	J2-4	40.01	41.3	30.00	TRUE	23.66	0.83
29.5	J2-5	40.02	41.3	30.00	TRUE	26.65	0.73
27.0	J2-6	42.51	43.8	30.00	TRUE	28.80	0.73
25.5	J2-7	44.01	45.29	30.00	TRUE	30.08	0.73
30.5	J3-1	39.03	40.31	30.00	TRUE	25.85	0.73
32.0	J3-2	37.55	38.82	30.00	TRUE	24.97	0.73
31.0	J3-3	38.55	39.82	30.00	TRUE	26.14	0.73
31.0	J4-EXT-1	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
31.0	J4-EXT-2	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)

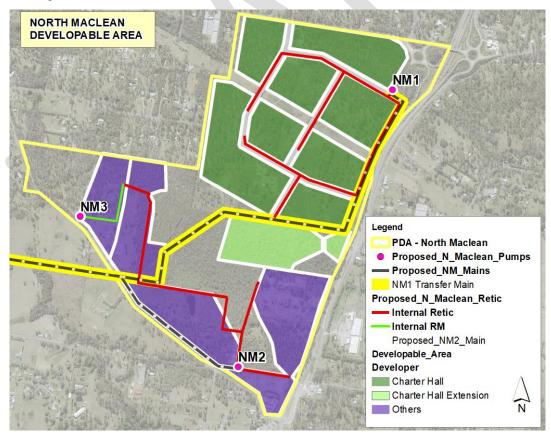
PROJECT:	30109334	Author: Software:	Mike Cazeres WaterCAD Connec	t Edition			
DATE: STAC	21/01/2024 GE 1 + 2 SCENARIO MC	DDELLING RESULTS					
		STANDA	RD FLOW		FI	RE FLOW	
ELEVATION (m)	JUNCTION LABEL NUMBER	MIN. PRESSURE (PH) (m)	MAX. PRESSURE (AD) (m)	FLOW NEEDED (L/s)	SATISFIES FF	MIN. RESIDUAL PRESSURE (m)	MAX. VELOCITY (m/s)
32.0	J1-1	38.39	39.29	30.00	TRUE	26.32	0.70
30.5	J1-10	39.87	40.78	30.00	TRUE	27.42	1.13
32.0	J1-2	38.39	39.29	30.00	TRUE	26.11	1.28
30.5	J1-3	39.87	40.78	30.00	TRUE	27.32	1.05
27.5	J1-4	42.84	43.76	30.00	TRUE	27.99	1.17
25.0	J1-5	45.32	46.25	30.00	TRUE	28.84	1.10
24.5	J1-6	45.82	46.75	30.00	TRUE	29.19	1.11
25.0	J1-7	45.32	46.25	30.00	TRUE	28.69	1.11
25.5	J1-8	44.82	45.75	30.00	TRUE	28.30	1.11
27.5	J1-9	42.83	43.76	30.00	TRUE	27.77	1.17
25.5	J2-2	44.84	45.76	30.00	TRUE	30.86	1.24
27.0	J2-3	43.33	44.26	30.00	TRUE	27.71	1.02
29.5	J2-4	40.84	41.77	30.00	TRUE	24.61	0.83
29.5	J2-5	40.86	41.77	30.00	TRUE	27.63	0.70
27.0	J2-6	43.35	44.27	30.00	TRUE	29.78	0.70
25.5	J2-7	44.84	45.76	30.00	TRUE	31.06	0.70
30.5	J3-1	39.86	40.78	30.00	TRUE	26.83	0.70
32.0	J3-2	38.37	39.28	30.00	TRUE	25.91	0.70
31.0	J3-3	39.37	40.28	30.00	TRUE	27.07	0.70
31.0	J4-EXT-1	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
31.0	J4-EXT-2	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)

PROJECT:	30109334	Author: Software:	Mike Cazeres WaterCAD Connec	t Edition			
DATE:	21/01/2024 AGE 1 SCENARIO MOI	DELLING RESULTS					
		STANDA	RD FLOW		FII	RE FLOW	
ELEVATION (m)	JUNCTION LABEL NUMBER	MIN. PRESSURE (PH) (m)	MAX. PRESSURE (AD) (m)	FLOW NEEDED (L/s)	SATISFIES FF	MIN. RESIDUAL PRESSURE (m)	MAX. VELOCITY (m/s)
32.0	J1-1	39.6	40	30.00	TRUE	27.76	0.65
30.5	J1-10	41.03	41.47	30.00	TRUE	25.01	1.71
32.0	J1-2	39.59	40	30.00	TRUE	27.41	1.71
30.5	J1-3	41.04	41.47	30.00	TRUE	25.36	1.71
27.5	J1-4	44.01	44.46	30.00	TRUE	25.94	1.71
25.0	J1-5	46.49	46.94	30.00	TRUE	26.74	1.71
24.5	J1-6	46.99	47.44	30.00	TRUE	27.06	1.71
25.0	J1-7	46.49	46.94	30.00	TRUE	26.56	1.71
25.5	J1-8	45.99	46.44	30.00	TRUE	26.16	1.71
27.5	J1-9	44	44.45	30.00	TRUE	25.55	1.71
25.5	J2-2	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
27.0	J2-3	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
29.5	J2-4	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
29.5	J2-5	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
27.0	J2-6	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
25.5	J2-7	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
30.5	J3-1	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
32.0	J3-2	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
31.0	J3-3	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
31.0	J4-EXT-1	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)
31.0	J4-EXT-2	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)

APPENDIX D

Logan Water Draft Technical Memorandum DD8001 North Maclean

Technical Memorandum


То:	Water Infrastructure Project Development Program Leader
From:	M Seymour (Planning Engineer)
Actioned by:	Click or tap here to enter text.
Date:	21 July 2022
Reference:	DD8001 North Maclean
Subject:	Load Projections for North Maclean PDA

1. Overview

The purpose of this memo is to confirm the estimated loads associated with the North Maclean PDA based on the best available current information as provided by developers.

1.1 Developer Information

The developer of "Charter Hall – Industrial Subdivision", 4499-4651 Mount Lindesay Highway, North Maclean is represented by Arcadis who have provided several plans showing the extent of the development that they are proposing. These are included in Attachment A. The development areas within the North Maclean PDA are shown in Figure 1.

Figure 1: Development areas

The development areas include:

• Charter Hall subdivision which is the main focus for development (represented by Arcadis)

Task ID | Page 1 of 10 | Date Issued: xx/xx/xxxx - Rev: xx | DM #

OGAN

- Charter Hall extension immediately south of the main focus of development (also represented by Arcadis
- Development areas draining to NM2 and NM3 (number of individual property owners)

Preliminary development plans have been submitted by Arcadis (developer's representative) for areas draining to NM1 transfer pump station.

The North Maclean PDA has been designated as an industrial precinct. The Charter Hall sub-division has not indicated the type of development (i.e. light, medium or heavy industry) and this will depend on the individual lot sales.

1.1.1 Development Constraints

The main constraint within the North Maclean PDA is flooding and Arcadis is proposing significant earthworks to raise the area above the Q100 flood level shown in Figure 2. They will also be installing stormwater basins and drainage channels.

Arcadis have submitted bulk earthworks plans for the areas proposed for development. These are shown in Figure 3 and Figure 4.

Figure 3: Bulk Earthworks in Charter Hall Subdivision

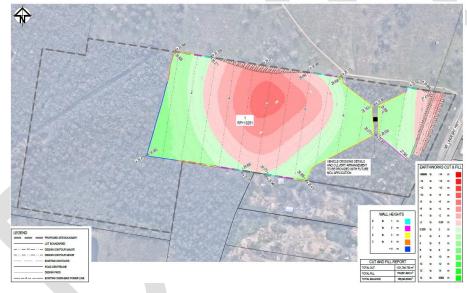


Figure 4: Bulk Earthworks in Charter Hall extension area.

2. Load assumptions

The North Maclean PDA is a designated industrial use precinct. The load estimates have been based on the following table extract from the task report "Infrastructure Demand Model 2020 (IP0017), September 2021. The industrial conversion rates were based on typical water consumption rates associated with several non-residential uses along with a return to sewer factor.

			on Rates - iter			on Rates - /age
IDM Development Type	Average Water Consumption Method Adopted			Return to Sewer (%)	Gross Site Area Water EP/HA (Density Gross)	Gross Floor Area Water EP/HA (Density GFA)
Commercial	GFA, 5 th -95 th %ile	-	55.90	0.90	-	50.31
Office	As per Commercial		55.90	0.90		50.31
Warehouse Distribution	As per Commercial		55.90	0.90		50.31
Education	GFA, 5 th -95 th %ile	-	105.30	0.80	-	84.24
Health	GFA, 5 th -95 th %ile	-	226.50	0.90	-	203.85
Industry Heavy	50% above Light Industrial	-	56.60	0.80	-	45.28
Industry Medium	25% above Light Industrial	-	47.25	0.80	-	37.80
Industry Light	GFA, 5 th -95 th %ile	-	37.80	0.80	-	30.24
Sport Recreation	Gross, 10th-90th %ile	1.05	-	0.90	0.945	-
Rural	Based on Water Meter Consumption	-	-	-	-	-
Retail Services	GFA, 5 th -95 th %ile	-	97.60	0.90	-	87.84
Showroom Bulk Goods	GFA, 5 th -95 th %ile	-	110.80	0.90	-	99.72
Accommodation	GFA, 5 th -95 th %ile	-	233.90	0.90	-	210.51

Table 4-2: Non-residential conversion rates – Base Year and/or growth years*

Reference: Table 7.2 Development of Infrastructure Demand Model, LWIA 2018 (PI-181).

Table 1: Non-residential conversion rates

Industrial use was subdivided into consumption rates for light, medium and heavy industry. It should be noted that these are averages and in the case of very high users such as bottling plants, abattoirs, concrete manufacturers, etc individual assessments of load will be necessary.

The consumption rates have been based on GFA and it has been assumed that this is equal to 70% of the developable area that excludes roads, public open space and stormwater lagoons and drainage channels, etc.

The ultimate loads were determined for the developable areas assuming light, medium and heavy industrial uses.

In the absence of any growth rate assumptions from the developer it has been assumed that.

- North Maclean 1 Pump Station catchment
 - o 10% of the ultimate load in 2023
 - o 90% of ultimate load in 2051
- North Maclean 2 and 3 pump station catchments
 - 10 % of the ultimate load in 2026
 - o 90% of the ultimate load in 2051

Ultimate development is assumed in 2081 and linear growth has been assumed between 2023 / 2026 and 2051.

I should be noted that the growth rates are unlikely to have any impact on the transfer infrastructure which has been sized on ultimate loads.

3. Load Estimates and Projection

Figure 5 includes the pump stations servicing the North Maclean PDA.

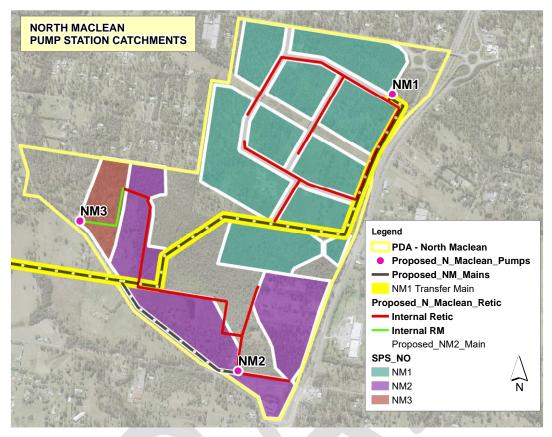


Figure 5: North Maclean pump station catchments

There are three pump stations, NM1 and NM2 are transfer pump stations and inject into a common rising main. NM3 is an internal pump station, and it transfers load to NM2 pump station via internal reticulation.

The ultimate loads have been estimated for the three pump stations and these are included in Table 2.

Table 2: Ultimate Loads

SPS NO	Developable Lot Area Ha	GFA Ha (1)	Light Ind EP (2)	Med Ind EP (3)	Heavy Ind EP (4)	IDM EP ULT
NM1	<mark>105</mark>	74	2,228	<mark>2,785</mark>	3,336	3,460
NM2	55	38	1,164	1,455	1,743	1,880
NM3	11	8	230	288	345	255
NM2 Total	66	46	1,394	1,743	2,088	2,135
Totals:	171	120	3,623	4,528	5,424	5,595

Note:

1. GFA assumed 70% of Developable Area

2. Light Industry: 30.24 EP / HA (based on GFA)

3. Medium Industry: 37.80 EP / HA (based on GFA)

4. Heavy Industry: 45.28 EP / HA (based on GFA)

Table 2 also includes ultimate loads for light, medium and heavy industry along with IDM2020 assumptions. The IDM_2020 load assumed in earlier studies was 5,595 EP.

The loads based on industrial use along with projections are included in Table 3.

Table 3: North Maclean PDA – Projected Loads

SPS NO	Sum of Sewer EP 2023	Sum of Sewer EP 2026	Sum of Sewer EP 2031	Sum of Sewer EP 2036	Sum of Sewer EP 2041	Sum of Sewer EP 2051	Sum of Sewer EP ULT	Developabl e Lot Area Ha	GFA Ha (1)
NM1	279	517	915	1,313	1,711	2,507	2,785	105	74
NM2		146	349	553	757	1,164	1,455	55	38
NM3		29	69	109	150	230	288	11	8
NM2 Total		174	418	662	906	1,394	1,743	66	46
Totals:	279	692	1,333	1,975	2,617	3,901	4,528	171	120

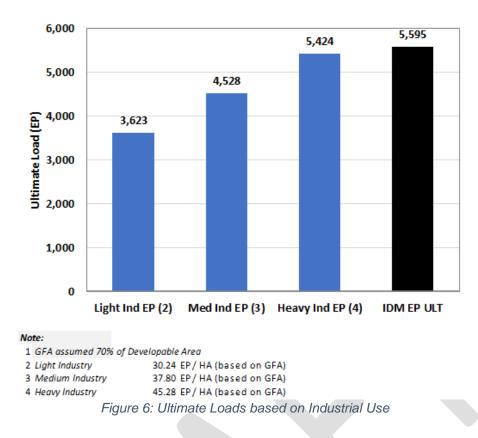
Medium Industry (3)

Liaht Industry (2)

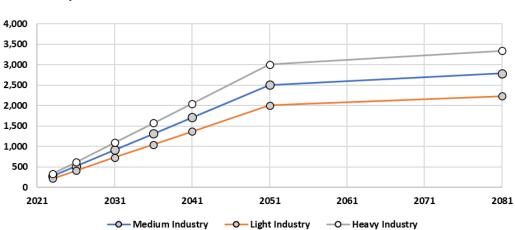
SPS NO	Sum of Sewer EP 2023	Sum of Sewer EP 2026	Sum of Sewer EP 2031	Sum of Sewer EP 2036	Sum of Sewer EP 2041	Sum of Sewer EP 2051	Sum of Sewer EP ULT	Developabl e Lot Area Ha	GFA Ha (1)
NM1	223	414	732	1,050	1,369	2,005	2,228	105	74
NM2		116	279	442	605	931	1,164	55	38
NM3		23	55	87	120	184	230	11	8
NM2 Total		139	335	530	725	1,115	1,394	66	46
Totals:	223	553	1,067	1,580	2,094	3,121	3,623	171	120

Heavy Industry (4)

SPS NO	Sum of Sewer EP 2023	Sum of Sewer EP 2026	Sum of Sewer EP 2031	Sum of Sewer EP 2036	Sum of Sewer EP 2041	Sum of Sewer EP 2051	Sum of Sewer EP ULT	Developabl e Lot Area Ha	GFA Ha (1)
NM1	334	620	1,096	1,573	2,050	3,003	3,336	105	74
NM2		174	418	662	906	1,395	1,743	55	38
NM3		34	83	131	179	276	345	11	8
NM2 Total		209	501	793	1,086	1,670	2,088	66	46
Totals:	334	828	1,597	2,366	3,135	4,673	5,424	171	120


Note:

GFA assumed 70% of Developable Area
 Light Industry: 30.24 EP / HA (based on GFA)


Medium Industry: 37.80 EP / HA (based on GFA)
 Heavy Industry: 45.28 EP / HA (based on GFA)

The following Figure 6 compares the ultimate loads based on the industrial use and the IDM_2020 assumption.

The growth rates included in Table 3 are shown in the following Figure 7, Figure 8 and Figure 9 for the NM1 and NM2 transfer pump stations and the total North Maclean PDA load.

NM1 Pump Station

Figure 7: North Maclean 1 Pump Station – Growth Projections

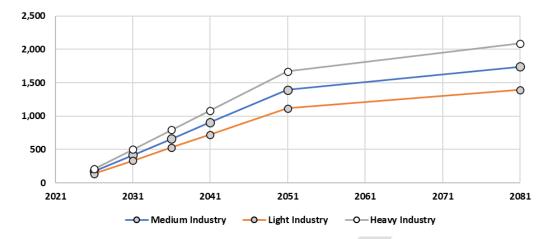
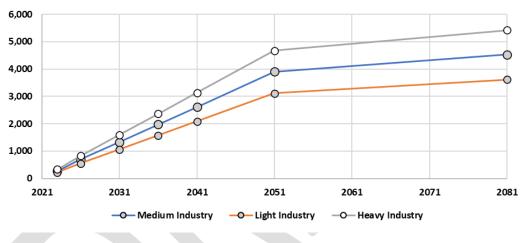



Figure 8: North Maclean 2 Pump Station – Growth Projections

North Maclean PDA Total

Figure 9: North Maclean PDA – Growth Projections

The type of industry will impact on the loads

- Light Industry 3,623 EP or 65% of IDM 2020 load (5,595 EP)
- Medium Industry 4,528 EP or 81% of IDM 2020 load (5,595 EP)
- Heavy industry 5,424 EP or 97% of IDM 2020 load (5,595 EP)

Indications are that the industrial development is unlikely to be heavy industrial use and will be a mix of light and medium industry.

4. Conclusions

In the absence of more accurate indication of uses it is proposed to adopt the loads based on medium industrial loads. It is unlikely to result in any significant reduction in infrastructure sizing and will allow for some flexibility if there is a need to service any industry with high sewage loads.

5. **Recommendations**

It is recommended that Logan Water adopt the loads included in Table 4 for development within the North Maclean PDA:

Table 4: Recommended Loads for North Maclean PDA (based on Medium Industrial use)

SPS NO	Sum of Sewer EP 2023	Sum of Sewer EP 2026	Sum of Sewer EP 2031	Sum of Sewer EP 2036	Sum of Sewer EP 2041	Sum of Sewer EP 2051	Sum of Sewer EP ULT
NM1	279	517	915	1,313	1,711	2,507	2,785
NM2		146	349	553	757	1,164	1,455
NM3		29	69	109	150	230	288
NM2 Total		174	418	662	906	1,394	1,743
Totals:	279	692	1,333	1,975	2,617	3,901	4,528

Signed by

Signed by	
	Date:
Choose an item. Choose an item.	Choose an item.
Supported by	
	Date:
Choose an item. Choose an item.	Choose an item.

APPENDIX E

Logan Flow and Pressure Modelling Report - 2021

Hydrant Pressure and Flow Modelling Report

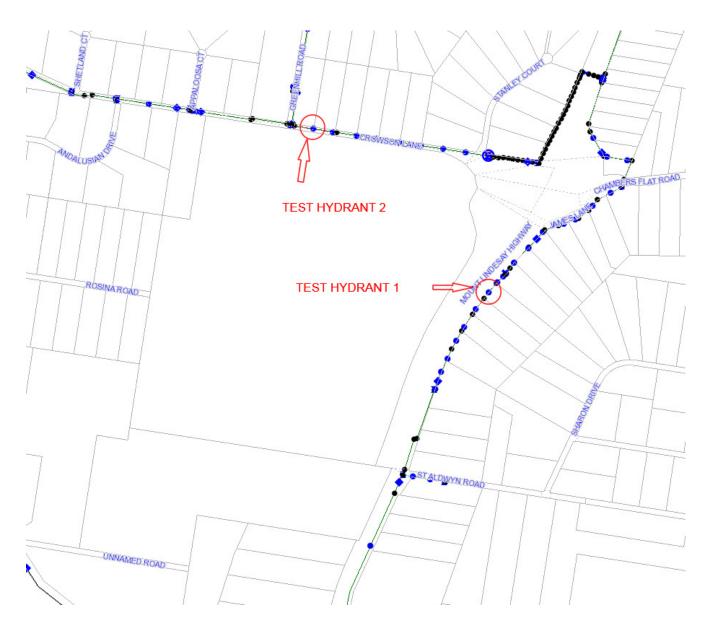
Preamble

This Hydrant Pressure and Flow Modelling Report presents a theoretical estimate of the residual pressure in the water main at the nominated location when water is taken from the system at the indicated flow rate. The information has not been verified by field tests and is presented for information purposes only. Please refer to the limitations described at the end of the report.

It is strongly suggested that field tests are conducted to verify the theoretical results. Note that pressure management has been implemented and it may take up to 60 seconds for the control valve in the water supply network to respond to increases in fire flow demand.

Method

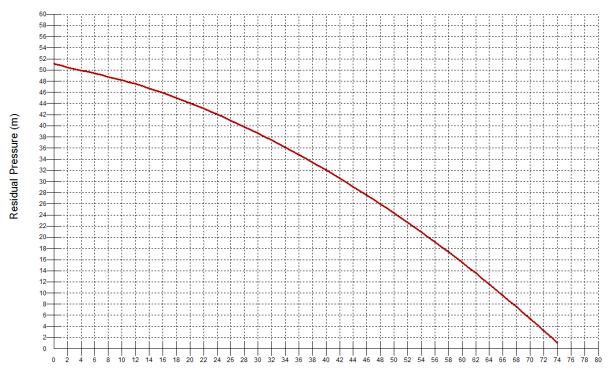
The Hydrant Curve function is used in the H2OMap network modelling software to simulate an increasing demand at a nominated hydrant in the water supply network with peak hour background demand. The residual pressure in the water supply network at the hydrant is calculated by the model for each increase in flow.


Location

The subject property details and test hydrant locations are provided in Table 1 and the locations of test hydrants are shown in Figure 1.

Table 1 Hydrant Location and Network Parameters

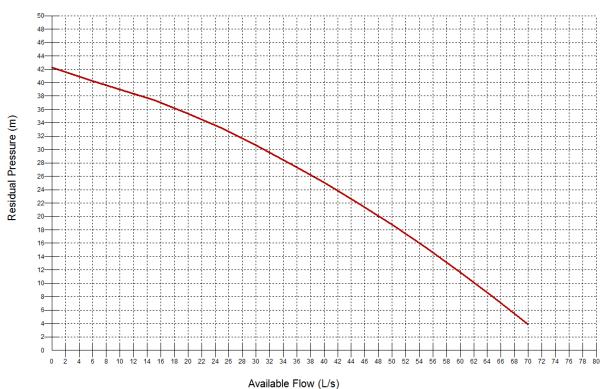
Subject Property Details							
Property Address 4499-4651 Mount Lindesay Highway							
Hydrant and Network Parameters – Test Hydrant –connection point 1							
Test Hydrant Asset ID	WFH019651						
Hydrant Location	Eastern Verge of Mount Lindesay Highway (at 4556-4564 Mount Lindesay Highway)						
Node Elevation (m)	20.97 m AHD						
Hydrant and Network Parameter	rs – Test Hydrant –connection point 2						
Test Hydrant Asset ID	WFH019651						
Hydrant Location	Northern Verge of Crowson Lane (at 101-109 Crowson Lane)						
Node Elevation (m)	30.56 m AHD						


Results

The results of the hydraulic modelling are presented in Table 2. A graphical representation of the hydrant curve results are shown in Figure 2 and Figure 3.

Table 2Hydrant Test Results

Normal Supply Conditions /(Peak Day Analysis)										
Hydrant										
Available Flow (L/s)Test Hydrant 1- Residual Pressure (m)Test Hydrant 2 Residual Pressure (m)										
0.00	54.14	42.31								
5.00	49.66	40.56								
10.00	48.19	39.00								
15.00	46.33	37.40								
20.00	44.08	35.40								
25.00	41.51	33.13								
30.00	38.64	30.64								
35.00	35.47	27.94								
40.00	32.03	25.05								
45.00	28.34	22.00								
50.00	24.34	18.76								



Hydrant Curve for The test hydrant 1(WFH020814) at 33:00 hrs

Available Flow (L/s)

Hydrant Curve for Test Hydrant 2 (WFH018765) at 33:00 hrs

Disclaimer

Information requested from Logan Water Infrastructure Development Services relating to hydraulic pressure and flow information is undertaken with the knowledge that such information is based on the most representative hydraulic modelling information available at the time (Hydraulic Modelling Information).

Information provided by Logan Water Infrastructure Development Services is based on hydraulic modelling of an area under the Pressure and Leakage Management Program undertaken by Logan City Council pursuant to government Regulation.

Model results are for the anticipated performance of a commissioned District Metered Area (DMA). Flow rates and system pressures may change after a DMA is commissioned.

The results of the hydraulic assessment may vary from practice due to changes in water supply operational philosophies, water supply policy decisions, maintenance activities on the water supply network and changes in customer demands.

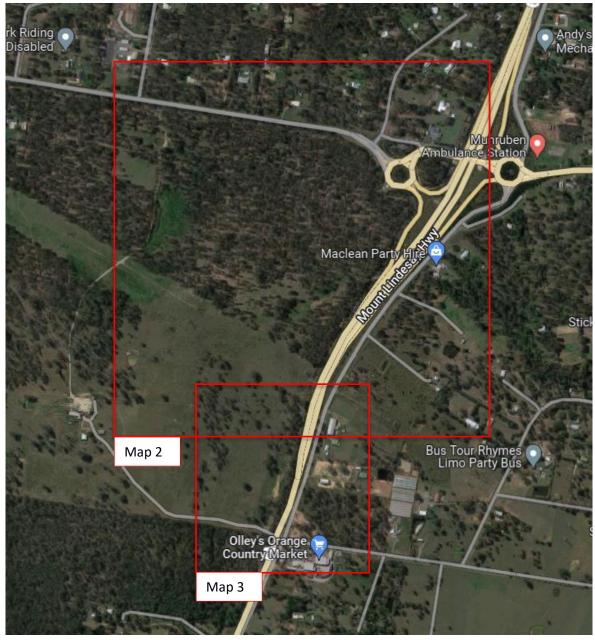
The Hydraulic Modelling Information has not been verified by field measurements and may be inaccurate due to field conditions. Users relying on Hydraulic Modelling Information do so at their

own risk and should make their own independent investigations to verify model outputs after the DMA is commissioned.

Logan Water Infrastructure Development Services do not guarantee and accept no legal liability whatsoever arising from or connected to, the accuracy, reliability, currency or completeness of the Hydraulic Modelling Information. The Hydraulic Modelling Information is made available to users only upon the terms of this disclaimer and no conditions imposed by users apply.

APPENDIX F

HTC Group Flow and Pressure Testing Report - 2022

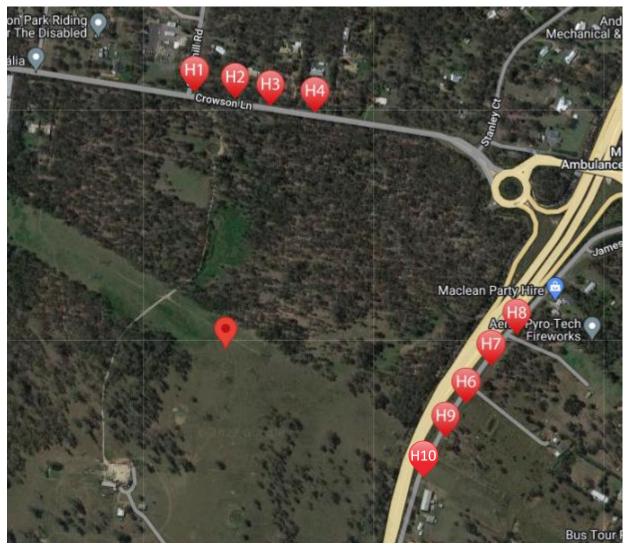


w HTCGroup.com.au
 e Admin@HTCGroup.com.au
 m 0423 383 329
 abn 96 610 617 055

Attention: Erin Peek

Arcadis Australia Pacific Erin.Peek@arcadis.com HTC Reference: Q6237 Date: 12th of October, 2022

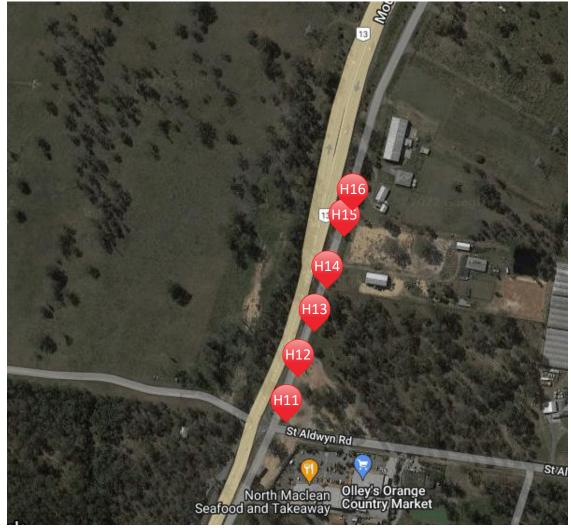
SEQ WS&S D&C Code Test Report for 4499-4651 Mount Lindesay Highway, North MacLean


Map 1: Test location overview

e Admin@HTCGroup.com.au

m 0423 383 329

abn 96 610 617 055


Map 2: Hydrant locations for Crowson Lane (Test 1) and Mount Lindsay Highway North Tests 2 and 3.

e Admin@HTCGroup.com.au

m 0423 383 329

abn 96 610 617 055

Map 3: Hydrant locations for the Mount Lindsay Highway South Tests 4, 5 and 6.

Test Summary

- 1. The Crowson Lane main (Test 1) was the strongest supply with 3 hydrants flowing simultaneously providing 60L/s at a residual pressure of greater than 120kPa.
- 2. Mount Lindsay Highway North (Tests 2 and 3) required 4 hydrants to flow simultaneously to provide 60L/s at a residual pressure of greater than 120kPa.
- 3. Mount Lindsay Highway South (Tests 4, 6 and 6) required 5 hydrants to flow simultaneously to provide 60L/s at a residual pressure of greater than 120kPa.

w HTCGroup.com.au
 e Admin@HTCGroup.com.au
 m 0423 383 329
 abn 96 610 617 055

Test 1: SEQ WS&S D&C Code Crowson Lane Test

Water was simultaneously drawn, at the flow rates below, from a single outlet of street spring hydrants H1, H2 and H3. The pressure was recorded at the outlet of H1, H2 and H3 to determine the hydrant performance. These pressures are used to determine if the main meets the requirements of the SEQ WS&S D&C Code. The residual pressure was recorded from the outlet of street spring hydrant H4.

H1 Flow	H1	H2 Flow	H2	H3 Flow	H3	Total	H4 Water Main
(L/s)	Hydrant	(L/s)	Hydrant	(L/s)	Hydrant	Flow	Residual Pressure
	Pressure		Pressure		Pressure	(L/s)	(kPa)
	(kPa)		(kPa)		(kPa)		
0	649	0	645	0	646	0	651
5	600	5	598	5	591	15	630
10	520	10	537	10	538	30	577
15	440	15	434	15	430	45	518
20	320	20	318	20	315	60	460
25	266	20	309	20	306	65	449
25	180	25	155	25	152	75	393
26.2	120	25.8	120	25.6	120	77.6	378

Test 1 Comments: No onsite tap was available for any test due to being a locked gate rural area.

Test 2: SEQ WS&S D&C Code Mount Lindesay Highway North Supply Test 1

Water was simultaneously drawn, at the flow rates below, from a single outlet of street spring hydrants H8, H7 and H6. The pressure was recorded at the outlet of H8, H7 and H6 to determine the hydrant performance. These pressures are used to determine if the main meets the requirements of the SEQ WS&S D&C Code. The residual pressure was recorded from the outlet of street spring hydrant H9.

H8 Flow	H8	H7 Flow	H7	H6 Flow	H6	Total	H9 Water
(L/s)	Hydrant	(L/s)	Hydrant	(L/s)	Hydrant	Flow	Main Residual
	Pressure		Pressure		Pressure	(L/s)	Pressure
	(kPa)		(kPa)		(kPa)		(kPa)
0	682	0	695	0	740	0	729
5	628	5	683	5	685	15	689
10	504	10	525	10	566	30	600
15	321	15	343	15	393	45	481
17.9	128	17.8	134	20	179	55.7	337
17.6	120	17.5	120	21.8	120	56.9	319

Test 2 Comments: The flow test was unable to achieve 65L/s @ 120kpa so Test 3 was performed.

w HTCGroup.com.au
 e Admin@HTCGroup.com.au
 m 0423 383 329
 abn 96 610 617 055

Test 3: SEQ WS&S D&C Code Mount Lindesay Highway North Supply Test 2

Water was simultaneously drawn, at the flow rates below, from H6, H7, H8 and H9. The type of equipment and the number of flowing outlets are shown in the table below. The pressure was recorded at the outlet of H6, H7, H8 and H9 to determine the hydrant performance. These pressures are used to determine if the main meets the requirements of the SEQ WS&S D&C Code. The residual pressure was recorded from the outlet of street spring hydrant H10.

H6	H6	H7	H7	H8	H8	H9	H9	Total	Water Main
Flow	Hydrant	Flow	Hydrant	Flow	Hydrant	Flow	Hydrant	Flow	Residual
(L/s)	Pressure – H10								
	(kPa)								
0	682	0	695	0	734	0	726	0	706
16.3	120	16.6	120	20	122	10	182	62.9	292
15.3	120	15.8	120	17.6	120	18	120	66.7	232

Test 4: SEQ WS&S D&C Code Mount Lindesay Highway South Supply Test 1

Water was simultaneously drawn, at the flow rates below, from a single outlet of street spring hydrants H11, H12 and H13. The pressure was recorded at the outlet of H11, H12 and H13 to determine the hydrant performance. These pressures are used to determine if the main meets the requirements of the SEQ WS&S D&C Code. The residual pressure was recorded from the outlet of street spring hydrant H14.

H11 Flow	H11	H12 Flow	H12	H13 Flow	H13	Total	H14
(L/s)	Hydrant	(L/s)	Hydrant	(L/s)	Hydrant	Flow	Water
	Pressure		Pressure		Pressure	(L/s)	Main
	(kPa)		(kPa)		(kPa)		Residual
							Pressure
							(kPa)
0	690	0	692	0	700	0	700
5	610	5	605	5	595	15	621
10	490	10	462	10	490	30	537
15	265	15	267	15	287	45	373
17.5	120	17.4	120	17.3	120	52.2	263

Test 4 Comments: The flow test was unable to achieve 65 L/S @ 120kpa. A further flow test was therefore performed

W HTCGroup.com.au
 e Admin@HTCGroup.com.au
 m 0423 383 329
 abn 96 610 617 055

Test 5: SEQ WS&S D&C Code Mount Lindesay Highway South Supply Test 2

Water was simultaneously drawn, at the flow rates below, from H11, H12, H13 and H14. The type of equipment and the number of flowing outlets are shown in the table below. The pressure was recorded at the outlet of H11, H12, H13 and H14 to determine the hydrant performance. These pressures are used to determine if the main meets the requirements of the SEQ WS&S D&C Code. The residual pressure was recorded from the outlet of street spring hydrant H15.

H11 Flow	H11	H12 Flow	H12	H13 Flow	H13	H14 Flow	H14	Total	H15 Water
(L/s)	Hydrant	(L/s)	Hydrant	(L/s)	Hydrant	(L/s)	Hydrant	Flow	Main Residual
	Pressure		Pressure		Pressure		Pressure	(L/s)	Pressure
	(kPa)		(kPa)		(kPa)		(kPa)		(kPa)
0	685	0	692	0	701	0	697	0	705
13.9	120	13.8	120	14	120	13.7	120	55.4	211

Test 5 Comments: The flow test was unable to achieve 65 L/s at 120kpa. A further flow test was therefore performed

Test 6: SEQ WS&S D&C Code Mount Lindesay Highway South Supply Test 3

Water was simultaneously drawn, at the flow rates below, from H11, H12, H13, H14 and H16. The type of equipment and the number of flowing outlets are shown in the table below. The pressure was recorded at the outlet of H11, H12, H13, H14 and H16 to determine the hydrant performance. These pressures are used to determine if the main meets the requirements of the SEQ WS&S D&C Code. The residual pressure was recorded from the outlet of street spring hydrant H15.

H11	H11	H12	H12	H13	H13	H14	H14	H16	H16	Total	H15 Water
Flow	Hydrant	Flow	Main Residual								
(L/s)	Pressure										
	(kPa)										
0	685	0	692	0	685	0	675	0	694	0	679
13.2	120	13.3	120	13.1	120	12.9	120	12.8	120	65.3	175

Hydrant Condition: All the hydrants (H1 to H16) were in good condition with a powder coat exterior.

General Notes:

- The test results are correct at the time of the tests
- Flow meters and pressure gauges are calibrated annually
- It is the responsibility of the recipient to determine the effect of changes in domestic/industrial usage, modifications to the main, differences in RL and extra hydraulic losses between the hydrant and tie in locations
- Flows are accurate to ±0.2L/s. Pressures are accurate to ±10kPa

- e Admin@HTCGroup.com.au
- m 0423 383 329

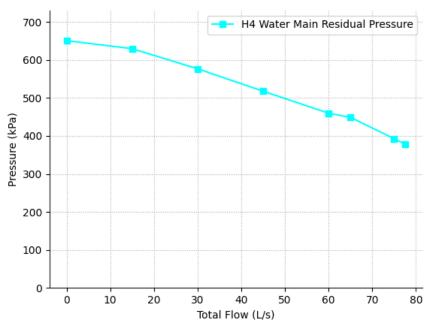
abn 96 610 617 055

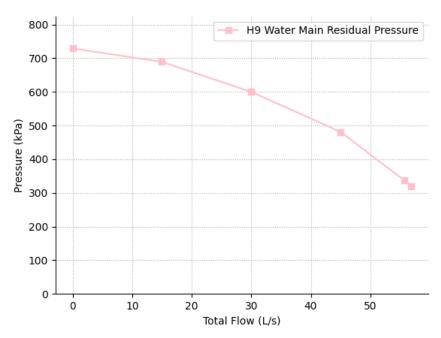
Approvals:

HTC Group Australia RPEQ 16239 QBCC 15018810 ABN 96 610 617 055 655 Waterworks Road, Ashgrove 0423 383 329 Dan@HTCGroup.com.au www.HTCGroup.com.au

Test Leading Hand Michael Gough 10:02hrs, 11th of October, 2022

M Gouge

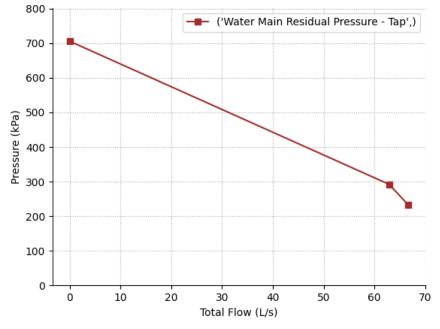

Report Approval Daniel Barwick 13th of October, 2022

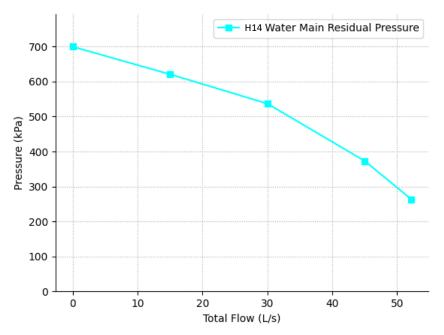


- e Admin@HTCGroup.com.au
- m 0423 383 329
- abn 96 610 617 055

Appendix 1: Test Result Graphs

Test 1: H1, H2 and H3 Combined Performance and Street Supply Test


Test 2: H8, H7 and H6 Combined Performance and Street Supply Test


e Admin@HTCGroup.com.au

m 0423 383 329

abn 96 610 617 055

Test 3: H6, H7, H8 and H9 Combined Performance and Street Supply Test

Test 4: H11, H12 and H13 Combined Performance and Street Supply Test

Appendix E – Arcadis Sewer Network Analysis

SEWER NETWORK ASSESSMENT

4499 – 4651 MOUNT LINDESAY HIGHWAY NORTH MACLEAN

CHARTER HALL PRIME INDUSTRIAL FUND

COMPLIANCE ENDORSEMENT , referred to in the PDA DEVELOPMENT APPROVAL

Approval no: DEV2018/961/5

Date: 22-Feb-24

4499 – 4651 MOUNT LINDESAY HIGHWAY, NORTH MACLEAN

SEWER NETWORK ASSESSMENT

Author	Mike Cazeres	difference of the second se
Checker	Richard Mulligan	A mg
Approver	Richard Mulligan	
	RPEQ 7850	C M
Report No	EAG006-30109334-AAR-SNA	
Date	15/02/2024	
Revision Text	04	

This report has been prepared for Charter Hall Prime Industrial Fund in accordance with the terms and conditions of appointment for 4499-4651 Mount Lindesay Highway, North MacLean QLD 4280. Arcadis Australia Pacific Pty Limited (ABN 76 104 485 289) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Revision	Date	Description	Prepared by	Approved by
01	1/11/2022	Issued For Information	ADA	RM
02	3/07/2023	Issued For Compliance Assessment	MC	RM
03	14/09/2023	Response to Information Request	MC	RM
04	15/02/2024	Updated Development Plan	HQ	RM

CONTENTS

1 EXECUTIVE SUMMARY	1
2 SITE CHARACTERISTICS	3
2.1 LOCATION DETAILS	3
2.2 LAND USAGE	3
2.3 TOPOGRAPHY AND FEATURES	3
3 PROPOSED DEVELOPMENT	4
3.1 DEVELOPMENT STAGING	4
3.2 DEVELOPMENT LOADING	5
3.3 LOGAN WATER PROJECTED DEVELOPMENT LOADING	7
3.4 ARCADIS CALCULATED DEVELOPMENT LOADING	8
4 DESIGN ASSUMPTIONS	8
5 MODELLING METHODOLOGY	9
5.1 DEPTH OF FLOW	9
6 RESULTS AND DISCUSSION	10
6.1 GRAVITY LINE ASSESSMENT	10
7 CONCLUSION	10
APPENDIX A	11
Development Layout Plans	11
APPENDIX B	17
Preliminary Sewer Plans	17
APPENDIX C	17
EP & Sewer Sizing Calculations	17
APPENDIX D	17
Logan Water Technical Memorandum DD8001 North Maclean	17

1 EXECUTIVE SUMMARY

Arcadis has been engaged by Charter Hall Prime Industrial Fund to prepare a Sewer Network Assessment (SNA) for a proposed development located in North Maclean, QLD over the following allotments:

• Lot 39 on SP258739 (4499-4651 Mount Lindesay Highway, North Maclean)

With the use of the SEQ Design Criteria, Logan City Council Planning Scheme and Logan City Council Technical Memorandum (DD8001 North Maclean), a hydraulic assessment of the proposed development's impact on the surrounding wastewater network and proposed internal network has been undertaken. The proposed connection point is the NM1 Pump Station.

The following SNA compares the existing allowances made within the Logan City Council Technical Memorandum to the current development layout completed by Watson Young (MP01 P10 March 2023). The purpose of this assessment is to determine whether the proposed development has been adequately accounted for within the greater sewer network and to size the sewer pipes within the local network in accordance with the Greater Flagstone PDA Infrastructure Planning and Background Report (IPBR), SEQ Design Criteria, Logan City Council Planning Scheme, and the Logan City Council Technical Memorandum DD8001. The assessment also confirms that satisfactory sewer capacity is available to convey external flows from the south to the NM1 SPS.

REVISION 02

An updated revision 02 of the Sewer Network Assessment has been undertaken to reflect the latest proposed development layout and staging. This revision demonstrates that the updated development has been adequately accounted for within the design of NM1 and that sewer gravity mains ranging from DN150 to DN225 are adequate to cater for the subject site in accordance with the Greater Flagstone PDA IPBR, SEQ Design Criteria, Logan City Council Planning Scheme, and the Logan City Council Technical Memorandum.

REVISION 03

Revision 03 of this report was prepared in response to an email received from Marco Bonotto of EDQ on 9 August 2023, requesting a response to the following items raised by Logan Water:

1. Provide a plan to demonstrate how proposed connection for each lot (including the southern external lot) can control the whole body of the lot. Internal plumbing should be able to maintain minimum of 1:60 gradient.

The Preliminary Sewer Sketch Plan Sheets 1 and 2 (30109334-AAP-WS00OP-CV-SKT-009 – 009G), enclosed with in Appendix B, provides the approximate extent of the lot serviceability catchment. The serviceability is based on ~3m deep property connections with 1:100 grade and achieves significant coverage across the development. There are localised areas within allotments which are not included in the lot serviceability catchment. Several approaches can be taken for these areas at the detailed/building design phases, including:

- Adjusting the architectural design to ensure areas requiring plumbing are situated within the lot serviceability catchment;
- Installation of a private pump station;
- Potential further extension of the sewer network following further subdivision of the super lots.

Please note that the SEQ Code allows 1:100 gradient for DN150 property connection branches and has been adopted accordingly (refer to SEQ-SEW-1104-1-D Note 1 and SEQ-SEW-1104-3-A, Note 2).

2. Deep sewer is not supported by Council. Demonstrate why deep sewer is required to service the development.

The proposed property connections have been raised to ~3m depth, thus avoiding deep property connections. The preliminary sewer grading provided in Appendix B includes sewer depths >5m to allow for the drainage of the large allotments over the 1.512km distance. As portions of super lot 4 grade away from the Sewer Line 3, the connection from Sewer Line 5 into Sewer Line 3 is a controlling factor forcing the sewer deeper.

Figure 6-1 has been updated to reflect additional branch lines included in the design to service the lots that grade away from the main gravity sewer lines.

3. Provide design calculations to demonstrate proposed gravity mains can achieve cleansing velocity (minimum velocity should be checked for PDWF not for PWWF as per the SEQ Code).

The pipe sizing has been amended such that the DN225 pipe commences further downstream at Structure 2/3 where the flow is greater. The design now meets the minimum grade for the corresponding pipe sizes. The sewer sizing calculations included in Appendix C have been updated accordingly.

REVISION 04

An updated revision 04 of the Sewer Network Assessment has been undertaken to reflect the latest proposed development layout and staging. Catchment boundaries have been updated to optimise the sewer network. Sewer gravity main has been relocated outside of the stormwater easement 2. The updated sewer network design demonstrates that the development has been adequately accounted for within the design of NM1 and that sewer gravity mains ranging from DN150 to DN225 are adequate to cater for the subject site in accordance with the Greater Flagstone PDA IPBR, SEQ Design Criteria, Logan City Council Planning Scheme, and the Logan City Council Technical Memorandum.

2 SITE CHARACTERISTICS

2.1 LOCATION DETAILS

The subject site is located within North Maclean, South-East Queensland, Australia over the following allotments:

Lot 39 on SP258739 (4499-4651 Mount Lindesay Highway, North Maclean)

The site is bordered by Crowson Lane to the north, Mount Lindesay Hwy to the east, a vacant lot to the south and residential lots to the west.

The total area of the site is approximately 1,177,359m² or 117.7359 ha.

Logan City Council is the local government authority.

2.2 LAND USAGE

In its current state, the project site has undergone recent vegetation clearing works and contains a high voltage electrical easement. Figure 2-1 below provides a current locality plan of the site.

Figure 2-1 Site Locality Plan (Aerial Imagery Courtesy of Nearmap)

2.3 TOPOGRAPHY AND FEATURES

The site topography consists of hills and valleys with gradual to steep grades. The site contains an overland flow path that discharges flows via a natural channel to an existing headwall that crosses Mount Lindesay Hwy. The site has a high point of approximately RL 43m AHD and a low point of RL 21m AHD.

3 PROPOSED DEVELOPMENT

The proposed development involves the delivery of 5 superlots and 4 drainage/open space lots. A plan extract of the proposed development has been provided in Figure 3-1.

This plan is also provided within Appendix A and should be referred to for further clarity.

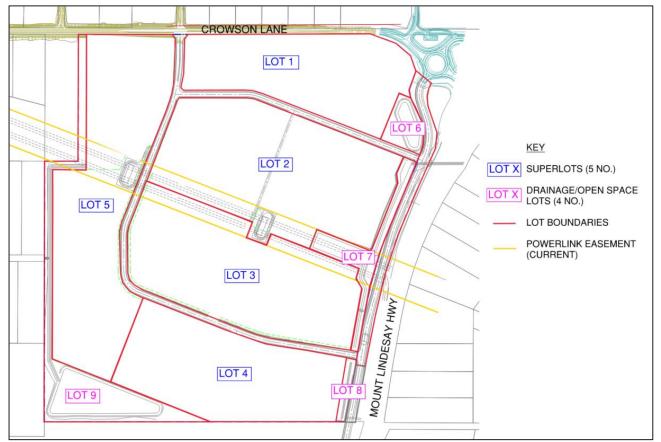


Figure 3-1 Proposed Development Superlot Plan (Watson Young MP01 P10, March 2022)

3.1 DEVELOPMENT STAGING

The proposed staging of the development site is summarised below and illustrated in Figure 3-2.

- Stage 1 Includes Superlots 1 to 2
- Stage 2 Includes Superlots 3 to 4
- Stage 3 Includes Superlot 5

An additional development demand reflecting the ultimate sewer servicing scenario for the NM1 SPS catchment was also included as summarised below and further discussed in Section 3.3.

Ultimate – Includes External Lot 1RP113251 which also forms a part of the NM1 SPS catchment

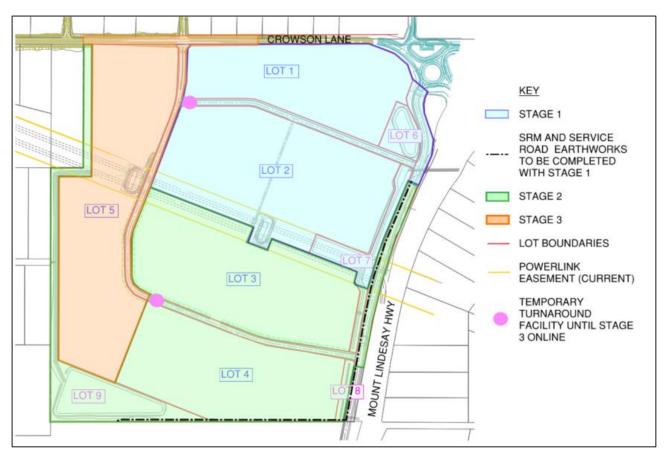


Figure 3-2 Proposed Development Staging Plan

3.2 DEVELOPMENT LOADING

For the purposes of this report, the development loading has been assessed under two loading cases to better determine the anticipated impact to be had on the surrounding network. These cases are as follows:

 Logan Water Projected Case – In accordance with the assessment completed by Logan Water within Technical Memorandum DD8001. Logan water generated Eps in accordance with Infrastructure Demand Model 2020 (IP0017) to allow for optioneering. The EPs have been assigned to 70% of the developable area as an "allowable GFA" and excludes roads, open spaces, carparks etc.

Figure 3-3 shows the non-residential conversion rates (Equivalent Persons (EP)) for the proposed development as per Logan Water's Technical Memorandum DD8001 North Maclean included within Appendix D.

Arcadis Calculated Developed Case – The calculated demand for the development based on the EP's outlined by Logan Water for Industry Medium and Retail (service station conservative assumption). GFAs are based on a concept development layout plan (Watson Young MP01 P10, March 2023) excluding roads, open spaces, carparks etc. A 10% contingency has been applied to the demand calculated via this concept development layout for future design flexibility.

An extract of the masterplan used for this scenario is included in Figure 3-4 below and provided in Appendix A.

These values are compared to ensure that NM1 can suitably cater for the development in its current designed state (Watson Young MP01 P10, March 2023). For this comparison the Projected Case will consider Industry Medium and Commercial only as per the current intention for the development.

			on Rates - ater		Conversion Rates - Sewage			
IDM Development Type	Average Water Consumption Method Adopted	Gross Site Area Water EP/HA (Density Gross)	Gross Floor Area Water EP/HA (Density GFA)	Return to Sewer (%)	Gross Site Area Water EP/HA (Density Gross)	Gross Floor Area Water EP/HA (Density GFA)		
Commercial	GFA, 5 th -95 th %ile	-	55.90	0.90	-	50.31		
Office	As per Commercial		55.90	0.90		50.31		
Warehouse Distribution	As per Commercial		55.90	0.90		50.31		
Education	GFA, 5 th -95 th %ile	-	105.30	0.80	-	84.24		
Health	GFA, 5 th -95 th %ile	-	226.50	0.90	-	203.85		
Industry Heavy	50% above Light Industrial	-	56.60	0.80	-	45.28		
Industry Medium	25% above Light Industrial	-	47.25	0.80	-	37.80		
Industry Light	GFA, 5 th -95 th %ile	-	37.80	0.80	-	30.24		
Sport Recreation	Gross, 10th-90th %ile	1.05	-	0.90	0.945	-		
Rural	Based on Water Meter Consumption	-	-	-	-	-		
Retail Services	GFA, 5th-95th %ile	-	97.60	0.90	-	87.84		
Showroom Bulk Goods	GFA, 5 th -95 th %ile	-	110.80	0.90	-	99.72		
Accommodation	GFA, 5 th -95 th %ile	-	233.90	0.90	-	210.51		

Reference: Table 7.2 Development of Infrastructure Demand Model, LWIA 2018 (PI-181).

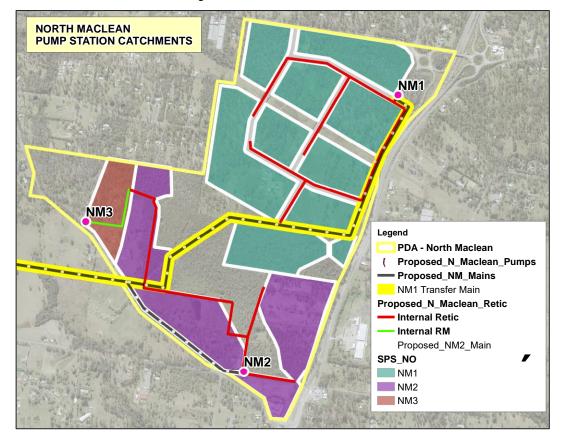

Figure 3-3 Non-residential conversion rates (Table 7.2 Development of Infrastructure Demand Model)

Figure 3-4 Concept Masterplan (Watson Young MP01 P10, March 2023)

3.3 LOGAN WATER PROJECTED DEVELOPMENT LOADING

The proposed development and an additional upstream catchment will be serviced by pump station NM1 and inject into a common rising main. The catchment plan used by Logan Water in their regional servicing strategy documentation is included in Figure 3-5.

Figure 3-5 Sewer Pump Station Catchments

Based on this Logan Water has estimated loads for NM1 with the assumption GFA = 70% of developable area. The results of Logan Water's Technical Memorandum DD8001 can be seen highlighted in Table 3-1 below.

SPS NO	Sum of Sewer EP 2023	Sum of Sewer EP 2026	Sum of Sewer EP 2031	Sum of Sewer EP 2036	Sum of Sewer EP 2041	Sum of Sewer EP 2051	Sum of Sewer EP ULT	Developabl e Lot Area Ha	GFA Ha (1)
NM1	<mark>279</mark>	<mark>517</mark>	<mark>915</mark>	<mark>1,313</mark>	<mark>1,711</mark>	<mark>2,507</mark>	<mark>2,785</mark>	<mark>105</mark>	<mark>74</mark>
NM2	-	146	349	553	757	1,164	1,455	55	38
NM3		29	69	109	150	230	288	11	8
NM2 Total		174	418	662	906	1,394	1,743	66	46
Totals:	279	692	1,333	1,975	2,617	3,901	4,528	171	120

Table 3-1 North Maclean PDA – Projected Loads

3.4 ARCADIS CALCULATED DEVELOPMENT LOADING

The demand for the development based on the EP's outlined by Logan Water for Industry Medium and Commercial was applied to the concept development layout completed by Watson Young (MP01 P10, March 2023) to generate a comparison of ultimate demand on the sewer network. A 10% contingency has been applied to the demand calculated via this concept development layout for future design flexibility.

Lot 1RP113251 is located immediately south of the site area illustrated in Figure 2-1 and also forms a part of the overall NM1 catchment illustrated in Figure 3-5. This area has also been included in this assessment, with assumed demand for this lot specified below in line with Logan Water demand estimation methodology:

- Lot 1RP113251 Area = 16.0435Ha
- Assume 70% GFA = 11.23045Ha GFA
- Corresponding Lot 1 RP113251 EP demand = 425 EPs +10% Contingency = 467 EPs

The results of this were then compared against the projected loads completed by Logan Water, included in Table 3-2 below. Refer to Appendix C for further details on EP calculations. The calculation summary in Appendix C also specifies the assumed contributing lots to each manhole structure, and it is noted that large variances to these contributing lot assumptions will impact the conclusions of this sewer network assessment accordingly.

Table 3-2 North Maclean PDA – Proposed vs Projected Loads (Medium Industry)

	SPS Catchment No	Ultimate Sewer EPs
Logan Water Projected Loading	NM1	2785
Arcadis Calculated Proposed Loading	NM1	2764
Difference (%)		-1%

As seen above, the proposed development loading based on the concept lot layout MP01 P10 and the assumed development loading of the southern Lot 1 RP 113251 also forming a part of the NM1 sewer pump station catchment remains generally in accordance with Logan Water's projected loading.

It is recommended to maintain infrastructure sizing based on the Logan Water projected loadings as it will allow for some flexibility in the network if there is future need to service development with higher sewage loads. The sewer calculations undertaken in this assessment have therefore factored the proposed contributing EPs to each sewer structure up to meet Logan Water's total projected loading of 2785 EPs to remain conservative and ensure alignment with the previous studies undertaken for the NM1 SPS.

4 DESIGN ASSUMPTIONS

The sewer network surrounding the proposed development site was designed using the SEQ WS&SDC, Logan City Council Planning Scheme Policy and Logan Water's Technical Memorandum DD8001 North Maclean. The demand due to the proposed development has been applied to the Colebrook-White equation and minimum pipe sizes and grades were generated.

- The extent of the network studied is to the downstream manhole prior to the NM1 SPS (gravity line from collection manhole to SPS and SPS excluded).
- Industry Medium Average Dry Weather Flow (ADWF) = 165 L/EP/d.
- Peak Dry Weather Flow (PDWF) = d x 165 L/EP/d.
- Peak Wet Weather Flow Industry Medium (PWWF) = 840 L/EP/d
- Gravity Main Maximum Velocity = 3m/s at PWWF.
- Colebrook-White equation is used to calculate flows.
- Roughness coefficient is taken as k = 1.5mm.

• Depth of flow @ PWWF – Proposed new sewers = Max flow depth shall not exceed 75% of full pipe depth.

5 MODELLING METHODOLOGY

The PWWF of the internal gravity sewer network was calculated and compared against the theoretical performance of the network determined via the Colebrook-White equation to confirm the adequacy of the proposed sewer network under the proposed development loading. Refer to Appendix C for EP & Sewer Sizing Calculation results.

For the purposes of this assessment, the ultimate development scenario has been assessed. Interim staging scenarios for the sewer network result in lower peak flows through the system and therefore less conservative scenarios. The proposed gravity sewer network is to meet or exceed minimum grades to ensure self-cleansing throughout the interim staging scenarios and the ultimate assessment aims to confirm adequacy under the most conservative peak flow network state.

5.1 DEPTH OF FLOW

The depth of flow was assessed for all new pipes to be installed to service the developed scenario. In accordance with the Logan City Council Planning Scheme requirements and as listed in the Design Assumptions above. Depth of flow compliance under PWWF (75% max depth for new pipes) was assessed in accordance with the sewer network design criteria as specified in the Greater Flagstone PDA IPBR Table 4.2.1.

6 RESULTS AND DISCUSSION

6.1 GRAVITY LINE ASSESSMENT

For the developed scenario, the pipe reaches assessed are shown below in Figure 6-1.

Figure 6-1 Assessed Gravity Line

Loads have been assigned to each structure as per the proposed loads of the development. Based on this loading and in accordance with the Greater Flagstone PDA IPBR, SEQ WS&SDC and Logan City Council Planning Scheme Policy the following reticulation main sizes are required:

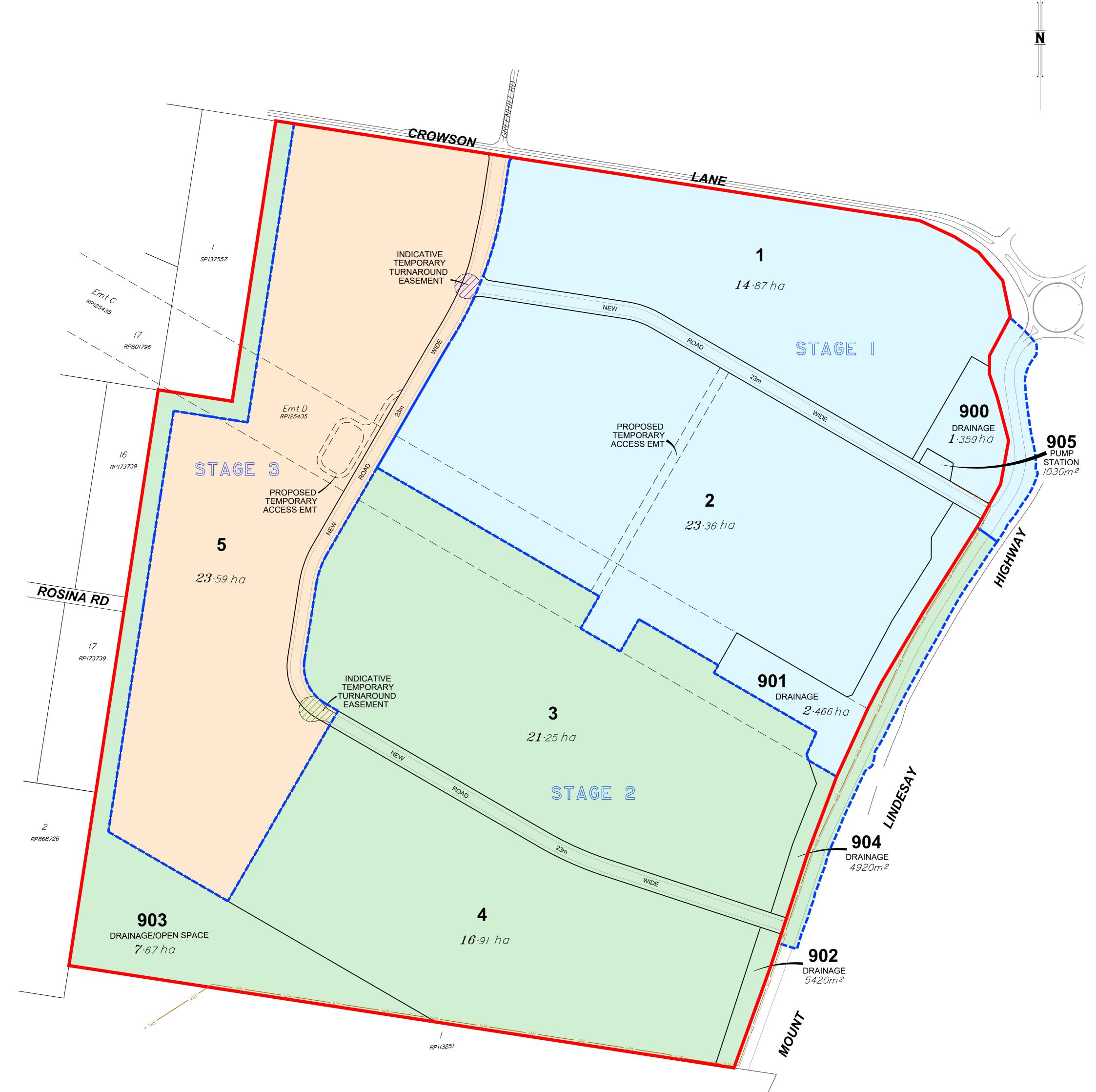
• DN150 PVC to DN225 PVC

The tabulated results are attached in Appendix C that show the detailed outputs of each structure assessed. Longitudinal sections and a Sewer Sketch Plan showing the depth of flow have also been included in Appendix B. We note the lot numbering in the Sewer Sketch Plan has been superseded by the lot numbering illustrated in the masterplan layout as per Figure 3-4 and included in Appendix A.

7 CONCLUSION

This assessment has concluded that the proposed development has been adequately accounted for within the design of NM1 and that sewer gravity mains ranging from DN150 PVC to DN225 PVC are adequate to cater for the subject site. The assessment also confirms that satisfactory sewer capacity is available to convey external flows from the southern Lot 1 RP113251 also included in the NM1 SPS catchment to the NM1 SPS.

APPENDIX A


Development Layout Plans

Appendix B Plan of Reconfiguration

Notes 1. Any licence, express or implied, to use this document				PLANS AND DOCUMENTS referred to in the PDA DEVELOPMENT APPROVAL Approval no.: DEV2018/961/8 Date: 27/09/2023
for any purpose whatsoever is restricted to the terms of the agreement or implied agreement between Wolter Consulting Group and the instructing party.			Leç	gend Site Boundary
 Design subject to local authority approval & detailed engineering requirements, areas and dimensions are approximate only and are subject to survey. Therefore 			Ta	 Stage Boundary ble of Development
this drawing is not to be used for engineering design.				ss area of subject land
3. Cadastral data supplied by others and is approximate only.			Area (Inclu	a of proposed park, drainage and open space12.6 ha iding pump station) a of new road
4. Indicative road horizontal design, subject to biopods and engineering review.			Leng Net	area of subject land
5. This note is an integral part of this plan. This plan may not be reproduced without this notation being included.			Num	ber of proposed lots
	Plan of F	Reconfiguration		RAWING NO. VERSION
Consulting group Scale 1:25	00 @ A1 - Lengths are in metres. $4499 - 4651$ N	Iount Lindesay Highway	CLIENT 22- Charter Hall	0007P/01-02 E
20 0 20	40 60 80 100 120 140 160 180 200 220 Local Authority	Lot 39 on SP258739 Logan City		ATE DRAWNSHEET NO.4-08-20231 of 1

Notes 1. Any licence, express or implied, to use this document for any purpose whatsoever is restricted to the terms of the agreement or implied agreement between Wolter Consulting Group and the instructing party.				PLANS AND DOCUME referred to in the PDA DEVELOPMENT APP Approval no.: DEV2018/96 Date: 27/09/2023	PROVAL
 Design subject to local authority approval & detailed engineering requirements, areas and dimensions are approximate only and are subject to survey. Therefore this drawing is not to be used for engineering design. 				Legend Site Boundary Stage Boundary	
3. Cadastral data supplied by others and is approximate only.				Stage 1	urnaround – Stage 1
4. Earthworks for Sewer Rising Main and full service road will be completed with Stage 1.				Stage 2	
5. Indicative road horizontal design, subject to biopods and engineering review.				Indicative Temporary Temporary Temporary Stage 3	urnaround – Stage 2
6. This note is an integral part of this plan. This plan may not be reproduced without this notation being included.				Sewer Rising Main	
WOLTER consulting group	Staging 4499-4651	Plan esay Highway	CLIENT Charter Hall	DRAWING NO. 22-0007P/01-03	VERSION E
	Description Local Authority	9 on SP258739 Logan City	Group	DATE DRAWN 3 14-08-2023	SHEET NO. 1 of 1

SCALE:

LEGEND

	HARDSTAND
	CAR PARK
	COLLECTOR ROAD
	CRUSHED ROCK TO FIRE ACCESS TRACK
	AREA OF GRASS / LANDSCAPING
	BIO DETENTION, GREEN CORRIDOR, STORMWATER EASEMENT
	WAREHOUSE
	OFFICE
	STAFF OUTDOOR
	AWNING
\bigcirc	ESTATE ROAD CONNECTION TO EXTERNAL ROAD NETWORK
$\checkmark \lor$	TRUCK ENTRY/EXIT
	POWER EASEMENT MAINTENANCE ACCESS POINT
	ESTATE BOUNDARY LINE
_ · _ · _	LOT BOUNDARY LINE
	BUILDING SETBACK LINE
	LANDSCAPE SETBACK LINE
	FENCE LINE
	RETAINING WALL

PARKING	PROVISION

SITE	PARK	(ING RATIO						
WAREHOUSES	0.66 (appro	ximately 1/150m ²)						
PARKING TOTAL	REQUIRED 3570	PROVIDED 3915						
activity/amenities	TBC							
NOTE : Ratio applied to calculate required car parking for combined facility area including warehouse & associated offices								

DEVELOPMENT ANALYSIS

DEVE	LOPMENT ANA	ALYSIS
LOT 1 LOT 2 WAREHOUS OFFICE (INC	E 1 CLD. 100m² DOCK OFFICE)	30,990m² 31,274m² 20,000m ² 1,100m ²
LOT 3 WAREHOUS OFFICE		24,981m² 6,600m ² 300m ²
WAREHOUS	E 2	5,850m ² 300m ²
LOT 4 WAREHOUS OFFICE	E 1	17,479m² 7,950m² 400m²
LOT 5 WAREHOUS	E 1	15,005m² 6,850m²
OFFICE LOT 6 WAREHOUS	F 1	350m ² 15,503m ² 6,550m ²
OFFICE LOT 7		300m ² 49,645m ²
WAREHOUS OFFICE (INC WAREHOUS	LD. 100m ² DOCK OFFICE)	12,100m² 600m² 7,000m²
WAREHOUS	CLD. 100m ² DOCK OFFICE) E 2B CLD. 100m ² DOCK OFFICE)	400m ² 5,800m ² 400m ²
LOT 8 WAREHOUS		39,921m² 9,750m²
OFFICE (INC WAREHOUS	CLD. 100m² DOCK OFFICE) E 1B	600m ² 9,250m ² 600m ²
LOT 9 WAREHOUS	CLD. 100m ² DOCK OFFICE)	108,081m ²
OFFICE (INC WAREHOUS	CLD. 100m² DOCK OFFICE) E 1B	14,100m² 800m² 14,300m²
OFFICE (INC WAREHOUS	CLD. 100m² DOCK OFFICE) E 2A	800m ² 15,900m ²
WAREHOUS	CLD. 100m ² DOCK OFFICE) E 2B CLD. 100m ² DOCK OFFICE)	900m² 15,900m² 900m²
LOT 10 WAREHOUS	E 1A	120,643m² 19,300m²
WAREHOUS		1000m² 19,300m² 1000m²
WAREHOUS	CLD. 100m ² DOCK OFFICE) E 2A CLD. 100m ² DOCK OFFICE)	10,700m² 700m²
WAREHOUS		10,200m² 600m²
	E 2C CLD. 100m ² DOCK OFFICE)	9,300m ² 700m ²
LOT 11 WAREHOUS	E 1A LD. 100m² DOCK OFFICE)	109,982m² 17,650m ² 900m ²
WAREHOUS OFFICE (INC	E 1B CLD. 100m ² DOCK OFFICE)	17,800m² 900m²
WAREHOUS OFFICE (INC WAREHOUS	LD. 100m ² DOCK OFFICE)	13,200m² 800m² 13,200m²
	CLD. 100m ² DOCK OFFICE)	800m ² 98,224m ²
WAREHOUS OFFICE (INC WAREHOUS	CLD. 100m ² DOCK OFFICE)	15,700m² 800m² 14,350m²
OFFICE (INC WAREHOUS	CLD. 100m ² DOCK OFFICE) E 1C	800m ² 12,400m ²
WAREHOUS	CLD. 100m ² DOCK OFFICE) E 1D CLD. 100m ² DOCK OFFICE)	800m² 12,400m² 800m²
LOT 13 WAREHOUS		142,280m² 20,550m²
WAREHOUS		1100m ² 19,850m ² 1100m ²
WAREHOUS	CLD. 100m ² DOCK OFFICE) E 2A CLD. 100m ² DOCK OFFICE)	1100m² 20,800m² 1100m²
WAREHOUS OFFICE (INC		20,000m ² 1100m ²
LOT 14 WAREHOUS OFFICE (INC	E 1A CLD. 100m² DOCK OFFICE)	80,077m ² 12,100m ² 700m ²
WAREHOUS OFFICE (INC WAREHOUS	LD. 100m ² DOCK OFFICE)	12,100m² 700m² 24,050m²
	CLD. 100m ² DOCK OFFICE)	1300m ² 82,432m ²
WAREHOUS OFFICE WAREHOUS		10,350m² 500m² 9,050m²
OFFICE WAREHOUS		500m ² 12,250m ²
OFFICE WAREHOUS OFFICE	E 1D	600m ² 7,850m ² 400m ²
TOTAL BL	DG AREA ities not included)	540,800m ²
SITE COV	,	
TOTAL SIT	ROADS	1,177,359m² 71,013m²
-	NTION BASIN RSITY+25m BUFFER	14,302m² 76,670m²
STORMW	ATER EASEMENT 1 ATER EASEMENTS (2)	5,790m ² 26,074m ²
	DENING	16,992m²
TOTAL DE	E VELOPABLE AREA ERAGE	966,518m ² 55.95%
	REVISION: PRELIMINARY ISSUE	BY: CHK: JWK GP
1.08.2022	CIVIL & LOT ALIGNMENT ISSUE	JWK GP JWK GP JWK GP
6.09.2022	TRUCK MOVEMENT UPDATES	JWK GP

All areas indicated are indicative for design and planning purposes only and should not be used for any contractual reasons without verification by a licensed surveyor or further design development being completed.

Watson Young Architects P/L Melbourne | Perth | Sydney 03 9516 8555 ACN: 111398700 8 Grattan Street Prahran VIC 3181 | e: info@watsonyoung.com.au | w: watsonyoung.com.au © Watson Young Architects. This drawing is protected by copyright.

APPENDIX B

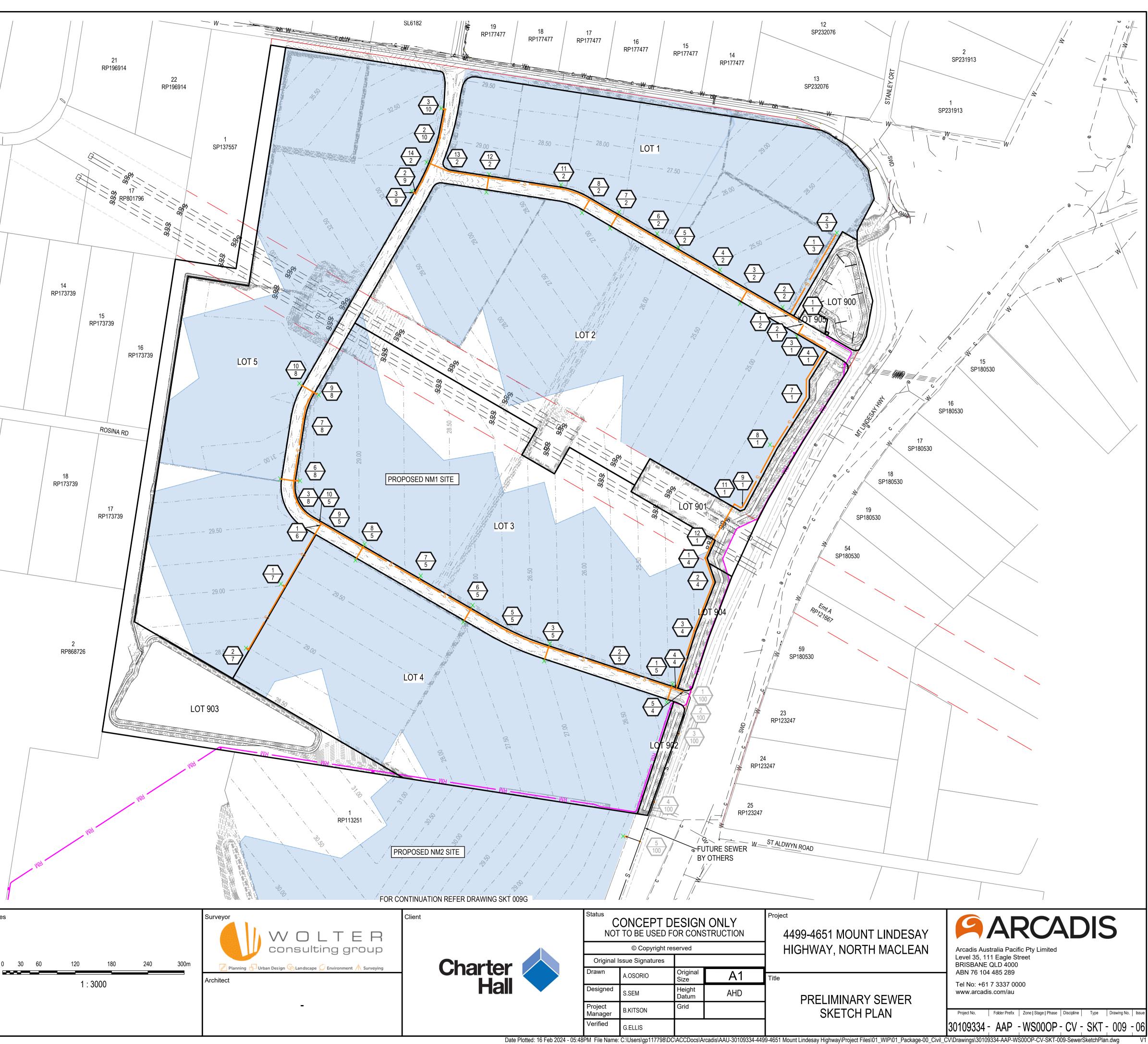
Preliminary Sewer Plans

NOTE:

- THIS DRAWING IS BASED ON:
- -- EXISTING LiDAR SURVEY FROM WOLTERS RECEIVED 09.03.2022.
- -- FINISHED SURFACE LEVELS SHOWN ON THE PLANS.

LOT SERVICEABILITY CATCHMENTS BASED ON THE FOLLOWING DESIGN CRITERIA.

- 3.0m DEEP CONNECTION AT SEWER MAIN / BOUNDARY U.N.O.
 1:100 INTERNAL GRADING, PERPENDICULAR TO LOT
- ORIENTATION (WORST CASE RUN).
 MAX 0.60m COVER TO PROPOSED FINISH SURFACE AT UPPER MOST REACH.

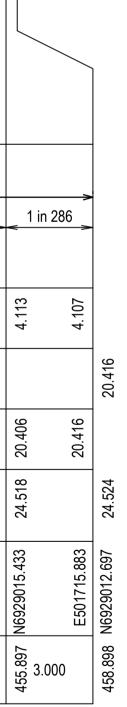

LEGEND

0.5%

DESIGN GRADING

PROPOSED FINISH SURFACE CONTOUR
OVERLAND FLOW PATHS
PROPOSED STORMWATER DRAINAGE
PROPOSED SEWER RISING MAIN
PROPOSED SEWER GRAVITY MAIN
PROPOSED SEWER MANHOLE
PROPOSED LOT CONNECTION POINT
EXISTING STORMWATER DRAINAGE
EXISTING OVERHEAD POWER LINE
EXISTING WATER MAIN
EXISTING UNDERGROUND ELECTRICITY
EXISTING COMMUNICATIONS
POWERLINK EASEMENT
FUTURE SEWER RISING MAIN (BY OTHERS)
FUTURE SEWER GRAVITY MAIN (BY OTHERS)
APPROXIMATE LOT SERVICEABILITY CATCHMENT - REFER TYPICAL NOTES

100mm on Original




							_
						Scales	Surve
06	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	31.01.24		
05	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	25.08.23	0 30 60 120 180 240 300m	
04	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	AO	SS	GE	03.07.23		Archi
03	LINE 04 ADDED	JG	EP	GE	24.10.22	1 : 3000	Archi
02	LINES 2 AND 3 ADDED	JG	EP	GE	26.08.22		
01	ORIGINAL ISSUE	JG	EP	GE	19.07.22		
Issue	Description	DR	СН	VE	Date		

	1/1 (2/1	(3/1)	(4		5/1	6/1		//1)			(8/1)	9/1) (10/1		1/1		2/1
STRUCTURE TYPE		LINED X	PE PE	P2 P2	PE LINED	3.0m RADIUS	3.0m	RADIUS X	LINED			\times	LINED	됩	3.0m 3.0m	KADIUS P2	LINED -	P2	Ц
STRUCTURE LID TYPE		۵	۵	В								۵		۵		<u>م</u>		۵	
STRUCTURE DROP TYPE																			
JUNCTION LINE		LINE 2										L	INE HC13						-
DEPTH TO HC																			
HC INVERT LEVEL																			
HC TYPE HC LOT No																			
CH. FROM D/S STRUC/ BEND																			
										GN SURFACE L RFACE LEVEL							<u> </u>		
	150mm IL 23.644 CLR 4.840 1650mm IL 21.782 CLR 2.834			000/IIIII IL 21:002 GLN 2:332															
DATUM R.L.	11.0																		
LAND USE DIAMETER	<											uPVC							
GRADE EMBEDMENT TYPE	<u> </u>	1 in 2	286 _ 1	in 286	1 in 286	1 in 28	6	1 in 286 _	<	1 in 28	36	><	=1 in 286	, 	1 in 286	1 in 286	1	1 in 286 >	~
DEPTH TO INVERT	6.075	6.005 5.925	5.836	5.398	5.358 5.368 5.368	5.368	5.128	4.987	4.957			4.632	4.612	4.192	4.184	4.192	4.152	4.143	4.113
JUNCTION INVERT LEVEL		18.588											21.510				-		
SEWER INVERT LEVEL	18.500	18.508 18.588	18.649 18.689	18.868	18.908 18.926	18.926	19.117	19.219	19.249			19.592	19.612	20.005 20.035	20.047	20.088	20.128	20.376	20.406
DESIGN SURFACE LEVEL	24.575	24.513	24.485		24.266	24.294	24 245	2 F V V	24.206				24.225	24.227	24 230	77.47	24.280		24.518
SETOUT	E301809.062 N6929375.976	E501867.971 N6929374.077	E501859.085 N6929358.885	E501903.289	V6929333.305 E 501900 786	N6929328.980	E501871.667 N6929282.606	E501871.468	N6929253.568			E501819.018	V6929170.640	E501765.972 N6929071.787	E501762.787 N6929070.663	E501752.516	N6929076.607	E501717.114	NG929015.433
Ľ	, -					898 [.] 54.75			.665 N				L8L 110.10C			- 	+		807

						Scales						
						0	10	20	40	60	80	100m
06	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	31.01.24	HORZ 🖃						
05	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	25.08.23				1:1	000		
04	SEWER LONGITUDINAL SECTION UPDATED	AO	SS	GE	03.07.23							ł
03	SEWER LONGITUDINAL SECTION UPDATED	JG	EP	GE	24.10.22	0	1	2	4	6	8	10m
02	SEWER LONGITUDINAL SECTION UPDATED	JG	EP	GE	11.10.22	VERT 🖃			· · ·			
01	ORIGINAL ISSUE	JG	EP	GE	19.07.22				1:	100		
lssue	Description	DR	сн	VE	Date							
	100mm on	Original										

29.039 E	98.123	257.78	112.186		6: 3.377 6:00 0:00	26:11.867 22: 22:	385.21	70.680	3.000 4 4	458.89		
	OLTER	Client			CONCEPT D	OR CONST		Proj	4499-4651	MOUNT LINDESAY	ARCADIS	
	Landscape C Environment A Surveying	Charter		Original Drawn	© Copyright re Issue Signatures	served Original	A 4		HIGHWAY,	NORTH MACLEAN	Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289	
Architect		Hal		Designed	A.OSORIO S.SEM	Size Height Datum	A1 AHD	Title	PRELIM	IINARY SEWER JDINAL SECTION	Tel No: +61 7 3337 0000 www.arcadis.com/au	
_	-			Project Manager Verified	B.KITSON G.ELLIS	Grid			SH	EET 1 OF 8	30109334 - AAP - WS00OP - CV - SKT - 0	
		Da	ate Plotted: 16 Feb 2024 - 05:4	8PM File Name	: C:\Users\gp117798\D0	C\ACCDocs\Arca	adis\AAU-30109	334-4499-465	1 Mount Lindesay Highwa	ay\Project Files\01_WIP\01_Package-00_Civil	I_CV\Drawings\30109334-AAP-WS00OP-CV-SKT-009-SewerSketchPlan.dv	wg V1

STRUCTURE TYPE	(2/1) (× He	\searrow			C4/2 C4/2 C4/2 C4/2	(5/2 옵 법		2/2 E H H H		9/2 (10/ 30m 30m 30m 41L
										3.0 RAD H1
STRUCTURE LID TYPE STRUCTURE DROP TYPE	<u>۵</u>			<u>۵</u>	<u>۵</u>	<u>۵</u>	<u>۵</u>	<u>۳</u>	<u>۵</u>	
JUNCTION LINE	LINE 2	LINE 3		LINE HC03	LINE HC04	LI	NE HC05 LINE HC06	LINE H	IC07 LINE HC09	
DEPTH TO HC										
HC INVERT LEVEL										
HC TYPE										
HC LOT No										
CH. FROM D/S STRUC/ BEND										
			EXISTIN	G SURFACE LEVEL –						
							٨			
								•	1	
					,	8				
	728	0				Ψ				
	4 CLR 3.						č 1.439	81.110		
	n IL 22.79							1.556 CLF		
							imm IL 24	mm IL 24		
	240		\backslash				006	750		
	14.0									_
LAND USE DIAMETER	<						150Ø uPVC			_
GRADE	1 in 179	1 in 179	1 in 179	1 in	167 1	1 in 167	1 in 167	1 in 167	1 in 167 1 in 167	<u> </u>
EMBEDMENT TYPE										
DEPTH TO INVERT	6.005	5.936 5.916 5.916 5.973	5.903	5.929 3.751	3.751	3.731	3.711 3.711 3.691	3.691	3.321 3.314	3.314 3.314 3.305 3.305
JUNCTION INVERT LEVEL	18.588	21.747		19.319	22.516	23.190	23.402	23.849	23.609	
	18.508	18.747 18.767 18.857	18.877	19.239 21.417	21.749 21.769	22.243 22.263	22.509	22.964	23.529 23.649 23.779	23.779 23.779 23.897
SEWER INVERT LEVEL	13	4.684	24.780	25.168	25.500	25.974	26.220	26.655	26.970	27.094
SEWER INVERT LEVEL	24.5	24					+ 40	 ო თ	7 0 0	
DESIGN SURFACE LEVEL	24.		6.370	3.461 8.764	6.470	7.135 6.074	6.57	8.96	3.52 9.17 4 1e	9.204
	24.		E301629396.370 N6929396.370	E501773.461 N6929428.764	E501725.579 N6929456.470	E501657.135 N6929496.074	E501621.714 N6929516.570	E501558.963 N6929552.879	E501513.520 N6929579.173	431.315 N6929589.204 66 67 755 758 7501475.588

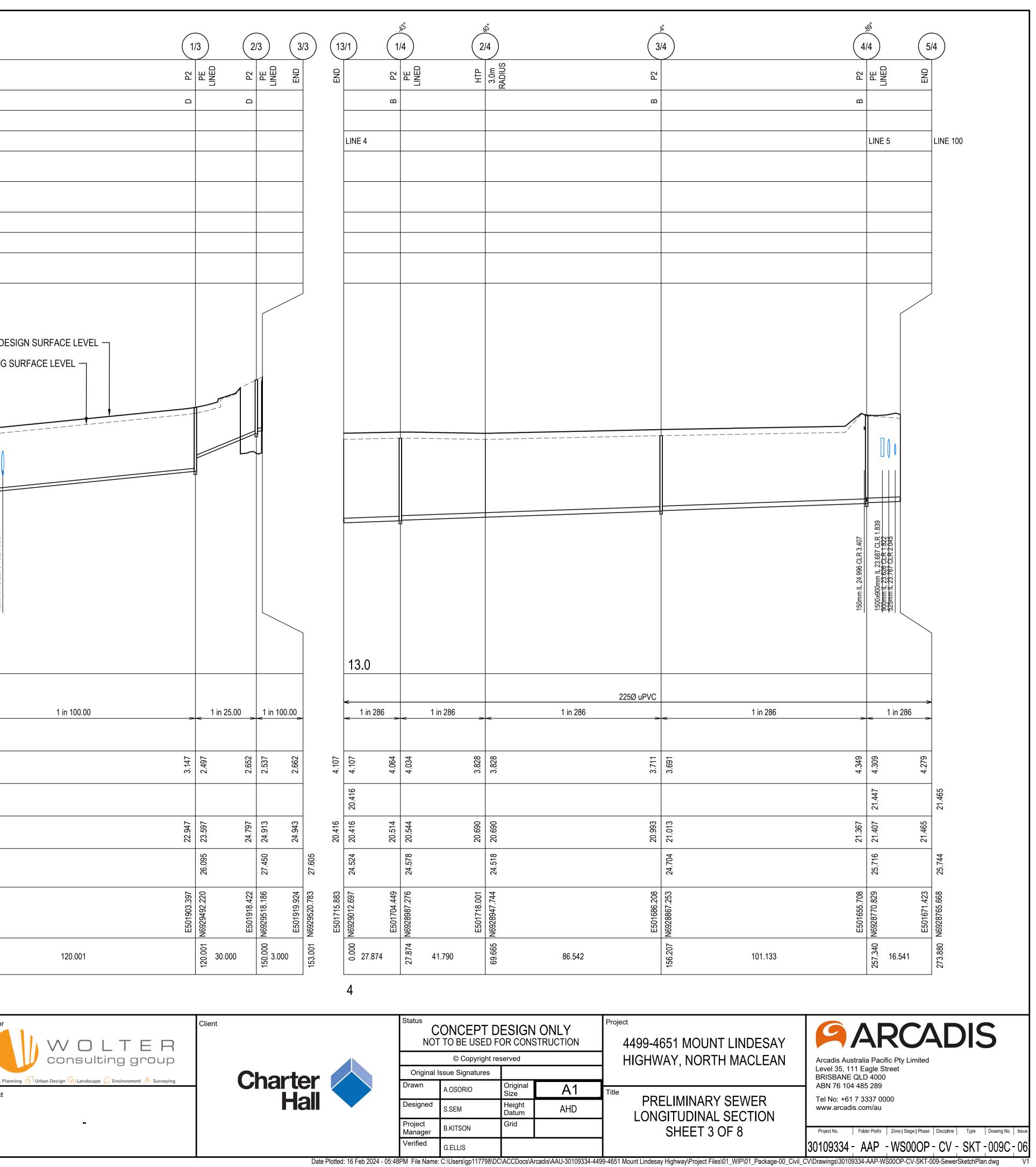
						Scales	Survey
						0 10 20 40 60 80 100	m
06	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	31.01.24		
05	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	25.08.23	1 : 1000	
04	SEWER LONGITUDINAL SECTION UPDATED	AO	SS	GE	03.07.23		Archite
03	SEWER LONGITUDINAL SECTION UPDATED	JG	EP	GE	24.10.22	0 1 2 4 6 8 10	
02	SEWER LONGITUDINAL SECTION UPDATED	JG	EP	GE	11.10.22		
01	ORIGINAL ISSUE	JG	EP	GE	19.07.22	1 : 100	
Issue	Description	DR	СН	VE	Date		

100mm on Original

WOLTER consulting group	Client	-	CONCEPT D T TO BE USED F © Copyright re	OR CONS		Project 4499-4651 MOUNT LINDESAY HIGHWAY, NORTH MACLEAN	Arcadis Australia Pacific Pty Limited
Planning 🖓 Urban Design 🛞 Landscape 🖉 Environment 🔥 Surveying	Charter		Issue Signatures				Level 35, 111 Eagle Street BRISBANE QLD 4000
ect				Original Size	A1		ABN 76 104 485 289 Tel No: +61 7 3337 0000
	Hall	Designed	S.SEM	Height Datum	AHD	PRELIMINARY SEWER	www.arcadis.com/au
-		Project Manager	B.KITSON	Grid		SHEET 2 OF 8	Project No. Folder Prefix Zone Stage Phase Discipline Type Drawing No. Issue
		Verified	G.ELLIS				30109334 - AAP - WS00OP - CV - SKT - 009B - 06
	Date Plotted: 16 Feb 2024 - 05:4	8PM File Name	: C:\Users\gp117798\DC	ACCDocs\Arca	adis\AAU-30109334-44	99-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Package-00_Civil_0	CV\Drawings\30109334-AAP-WS00OP-CV-SKT-009-SewerSketchPlan.dwg V1

27.202 23.897 24.474 22.474 24.74	\setminus	^v /2	(12/2)		
Immediation Immediation Immediation Immediation Immediation Immediation Endomation 2304 304 304 304 104 104 Endomation 2328 2384 318 104 104 104 Endomation 2328 1314 318 104 104 104 Endomation 2328 1314 1314 104 104 104 Endomation 2328 1111 101 101 101 101 101 Endomation 2334 1314 1316 111 101			P2 PE		
21342 2389 2389 24474 3281 1314 1314 141 1314 141 1314 141 1314 141 1314 141 1314 141 1314 141 1314 141 1314 1314 141 1314 131					
21.202 23.384 3.306 3.306 3.301 21.474 3.301 1.1 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1		LINE HC10	LINE F	HC11	
21.202 23.384 3.306 3.306 3.301 21.474 3.301 1.1 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1					
21.202 23.384 3.306 3.306 3.301 21.474 3.301 1.1 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1					
21.202 23.384 3.306 3.306 3.301 21.474 3.301 1.1 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1					
21.202 23.384 3.300 3.300 23.301 2.33961 2.339					
21.202 23.384 3.300 3.300 23.301 2.33961 2.339					
21.202 23.384 3.306 3.306 3.301 21.474 3.301 1.1 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1					
21.202 23.384 3.306 3.306 3.301 21.474 3.301 1.1 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1					
21.202 23.384 3.306 3.306 3.301 21.474 3.301 1.1 1.1 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1					
21.202 23.384 3.300 3.300 23.301 2.33961 2.339	Λ				
21.202 23.384 3.300 3.300 23.301 2.33961 2.339	•		0 0		
21.202 23.384 3.300 3.300 23.301 2.33961 2.339					
21.202 23.384 3.300 3.300 23.301 2.33961 2.339					
21.202 23.384 3.300 3.300 23.301 2.33961 2.339	.R 1.152		.R 1.161		
21.202 23.384 3.300 3.300 23.301 2.33961 2.339	IL 25.378 CI		IL 25.992 CI		
21.202 23.89/ 3.305 23.961 23.961 3.301 27.262 23.981 24.474 3.281 24.701 3.340 24.701 24.791 28.041 24.791	750mm		750mm		
21.202 23.89/ 3.305 23.961 23.961 3.301 27.262 23.981 24.474 3.281 24.701 3.340 24.701 24.791 28.041 24.791					
21.202 23.89/ 3.305 23.961 23.961 3.301 27.262 23.981 24.474 3.281 24.701 3.340 24.701 24.791 28.041 24.791					
21.202 23.891 3.305 23.961 23.961 3.301 27.262 23.981 24.474 3.281 24.701 3.340 24.701 3.340 28.041 24.791	1 in 167	1 in 167	>		
27.202 23.361 27.262 23.961 24.474 27.262 23.981 24.474 28.041 24.701 24.791	>	<	~~~>		
27.202 23.89/ 27.262 23.981 24.701 28.041	3.305 3.301	3.281	3.340		
27.202 23.89/ 27.262 23.981 24.701 28.041		24.474	24.791		
27.202	23.89/ 23.961				
450.009 E501465 461.575 N6929597 581.575 N6929615 581.575 N6929615					
120.000 States 120.00	E501465	N6929597	E501346 N6929615		
	600.705 764				
99-4651 MOUNT LINDESAY					
CHWAY. NORTH MACLEAN Arcadis Australia Pacific Pty Limited			ralia Pacific Pty Li)
PRFLIMINARY SFWFR Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289 Tel No: +61 7 3337 0000		BRISBANE ABN 76 104	QLD 4000 485 289		

STRUC/ BEND/ END NAME				(12	2/2		(13	8/2			4/2		12)
STRUCTURE TYPE				P2	PE NED		P2	PE LINED		P2	PE	P2	PE LINED
STRUCTURE LID TYPE				В			В			Ш		D	
STRUCTURE DROP TYPE					>						_		
					LINE	HC11					LINE 9		LINE 3
DEPTH TO HC											_		
HC INVERT LEVEL													
HC TYPE													
HC LOT No											-		
CH. FROM D/S STRUC/ BEND											_		
											1		Ε>
				ſ			-				•		
									=		19		
							J15		585 614			010	
							54 CLR 2.(93 CLR 1.5			15 CL B 1 G	
							150mm IL 29.254 CLR 2.015		375mm IL 29.093 CLR 1.585 1050mm II 28 217 CI R 0 614			150mm II 23 815 C <u>L B 1 910</u>	
DATUM R.L.					18	.0							13.0
LAND USE DIAMETER					<	150Ø uF	٧C				-		
GRADE EMBEDMENT TYPE					<	1 in 30.80	~~>	1 ii	n 100.	00 >	-		<
DEPTH TO INVERT				3.340	3.090		3.025	2.995		3.557	1	5.936	2.936
JUNCTION INVERT LEVEL					24.791						27.727		21.747
					24			11		17	27	17	
				5	51		5	U U J		27.477		18.747	21.747
SEWER INVERT LEVEL				24.701	24.951		27.121	3 27.151		2			
					28.041			30.146			3 31.034	-	3 24.684
SEWER INVERT LEVEL				E501346.493 24.701			E501280.440			E501250.399	N6929638.648 31.034	E501843.299	N6929388.353 24.68
SEWER INVERT LEVEL DESIGN SURFACE LEVEL					28.041	66.836		.10 N6929625.912 30.146	32.629	E501250.399	_	E501843.299	
SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT					N6929615.716 28.041	66.836		N6929625.912 30.146	32.629	E501250.399	N6929638.648	E501843.299	N6929388.353
SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT					581.575 N6929615.716 28.041	66.836	E501280.440	N6929625.912 30.146		E501250.399	681.039 N6929638.648		C 0.000 N6929388.353
SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT	GP GP AO	TF	GE	E201346.493	581.575 N6929615.716 28.041	Scales	0F	N6929625.912 30.146	60	E501250.399	N6929638.648		0.000 N6929388.353


Description

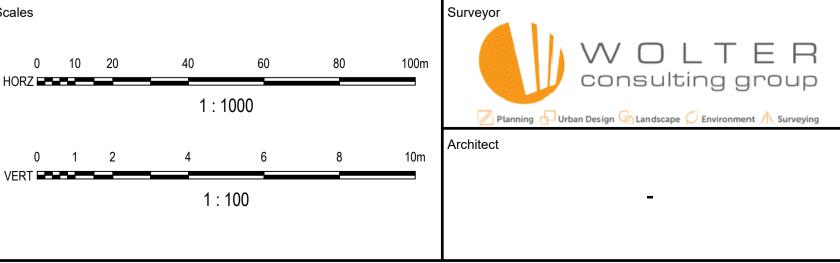
100mm on Original

ssue

DR CH VE Date

		/3		(2/	3		3/3) (13/	1)	(1/4			(× /4					
		PE			LINED	END	_	i	END				PE		НТР	3.0m					
	D						_					8					 				
										_INE	. 4						 				
IG SURFACE LEVEL –																					
			, (
				_	J												 				
		ם																			
5																					
-1							٦														
										13	.0										
									×	<										2	225Ø u
1 in 100.00	~ >	< 1	in 25.00	>	1 in <	100.00				, 	1 in 286	~	<	1 in 286	~>	<		1 in .	286		
	3.147	2.497		2.652	2.537	2.662			4.107	4.107		4.064	4.034		3.828	3.828					
										20.416							 				
	22.947	23.597		24.797	24.913	24.943				20.416		20.514	20.544		20.690	20.690	 				
		26.095			27.450		27.605			24.524			24.578			24.518					
	33.397	92.220		18.422	18.186	19.924	20.783		15.883	12.697		04.449	37.276		18.001	47.744					
	E501903.397	1 N6929492.220			0 N6929518.186	E501919.924	- ∠			0 N6929012.697			4 N6928987.276		E501718.001	5 N6928947.744					
120.001		120.001	30.000		150.000	.000	153.001			000.0	27.874		27.874	41.790		69.665		86.5	542		
									4	4											

STRUC/ BEND/ END NAME	(4/4) (1/5)	(2/5)		3/5	(4/5)	5/5	6/5	(7/5
STRUCTURE TYPE	P2 PE LINED PE LINED	P2 LINED		P2-1200mr PE LINED	HTP 3.0m RADIUS	P2 PE LINED	P2 PE LINED	2 2
STRUCTURE LID TYPE	В В	۳		В В		<u>ш</u>	۵	۵
STRUCTURE DROP TYPE								
JUNCTION LINE	LINE 5 LINE HC14			LINE HC16			LINE HC18	L
DEPTH TO HC								
HC INVERT LEVEL								
HC TYPE								
HC LOT No								
CH. FROM D/S STRUC/ BEND								
		DE	SIGN SURFACE LEVEL –					
							,	V I
				1				
								1.368
								mm IL 25
								1050
DATUM R.L.	15.0							
LAND USE								
DIAMETER	225Ø uPVC	1 in 179	1 in 179	1 in 179		1 in 2	179	1 in 179
GRADE EMBEDMENT TYPE	< ><	><		><	><	><	~ ~ ~	><
DEPTH TO INVERT	4.349 4.269 4.288 4.213	4.250		4.278	4.257	4.280	4.297	4.316
	700 4 4	4 4		56 4 4	4 4	4 4	381 4	
JUNCTION INVERT LEVEL	23.			53.8			24.	
SEWER INVERT LEVEL	21.367 21.447 21.473 21.473 21.548	22.072		22.764 22.784	22.965	23.201 23.231	23.619 23.639	24.191
DESIGN SURFACE LEVEL	25.761	26.323		27.043	27.223	27.481	27.916	
SETOUT	E501655.708 N6928770.829 E501648.539 N6928773.183	E501559.616 N6928802.388		E501445.607 V6928839.831	E501414.917 V6928849.911	E501376.437 V6928867.150	E501316.462 N6928901.812	E501231.120
					E50	~ ~	E50	
RUNNING CHAINAGE	000 ^{.0} 7.546 995 ^{.2}	93.596	120.000	Z1.142 21.145	47 87 87 87 87 87 87 87 87 87 87 87 87 87	019 69.2	271 88	98.599


						Í						
						Scales						
						0	10	20	40	60	80	100m
06	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	31.01.24	HORZ 🚍						
05	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	25.08.23				1:1	000		
04	SEWER LONGITUDINAL SECTION UPDATED	AO	SS	GE	03.07.23							
03	SEWER LONGITUDINAL SECTION UPDATED	JG	EP	GE	24.10.22	0	1	2	4	6	8	10m
02	SEWER LONGITUDINAL SECTION UPDATED	JG	EP	GE	11.10.22	VERT 🖃						
01	ORIGINAL ISSUE	JG	EP	GE	19.07.22				1:	100		
lssue	Description	DR	СН	VE	Date							
	100mm on	Original										

	<u> </u>	ô	ô		<u> </u>		-		
	3/5	4/5	5/5		6/5		(7/		8/5
	P2-1200mn PE LINED	HTP 3.0m RADIUS	PE LINED		P2 LINED		P2	LINED	LINED PE
	<u>م</u>		۵		<u>۵</u>		B		<u> </u>
	LINE HC16				LINE HC18			LINE HC20	LINE HC21
GN SURFACE LEVEL									
							1		
	I				0 0				
) CLR 1.368			
						im IL 25.580			
						1050m			
1 in 179	1 in 17	9	150Ø uPVC 1 in 179	1 in 179	><	1 in 179	>	<1 in 179	
	4.278 4.258	4.257	4.280		4.297		4.316	4.296	4.339
	23.856				24.381			25.562	26.145
	22.784	22.965	23.201		23.619 23.639		24.191	24.211	24.811
	27.043	27.223	27.481		27.916			28.508	29.150
	E501445.607 N6928839.831	E501414.917 N6928849.911	E501376.437 N6928867.150		E501316.462 N6928901.812		E501231.120	N692895	E501138.507 N6929004.783
120.000	551.145 221.145	45	42.165 019.362	69.271	364.881	98.599		463.480 107.000	570.480
	I				1				
Surveyor		Client			Status CONCEPT [JESIGN ONLY	Project		ARCADIS
WOLT consulting	E R group				NOT TO BE USED © Copyright	FOR CONSTRUCTION	-	9-4651 MOUNT LINDESAY GHWAY, NORTH MACLEAN	Arcadis Australia Pacific Pty Limited
Planning 🗗 Urban Design 🖓 Landscape 🖉 Environ		4	Charter Hall		Original Issue Signatures Drawn A.OSORIO	Original Size A1	Title		Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289
			Hall		Designed S.SEM	Height Datum AHD Grid		PRELIMINARY SEWER ONGITUDINAL SECTION	Tel No: +61 7 3337 0000 www.arcadis.com/au
					Project Manager Verified G.ELLIS		1	SHEET 4 OF 8	Project No. Folder Prefix Zone Stage Phase Discipline Type Drawing No. 30109334 - AAP - WS000P - CV - SKT - 009D -

Date Plotted: 16 Feb 2024 - 05:48PM File Name: C:\Users\gp117798\DC\ACCDocs\Arcadis\AAU-30109334-4499-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Package-00_Civil_CV\Drawings\30109334-AAP-WS00OP-CV-SKT-009-SewerSketchPlan.dwg V1

STRUCTURE TYPE	 	~		<u>}</u>					2		 		2 2	
	 	P2	LINED						P2	PE	END		Å.	DE I NED
STRUCTURE LID TYPE		Ш							В			-	В	
STRUCTURE DROP TYPE JUNCTION LINE				HC21						LINE 6			8	LINE
	 			1021									0	
DEPTH TO HC														
HC INVERT LEVEL														
HC TYPE														
HC LOT No														
CH. FROM D/S STRUC/ BEND														
												J		
									+	-				
										•				
									0	F				
									260	007				
									50mm II - 28 738 CI R 3 260					
									mm .78					
									150					
DATUM R.L.			17	.0										17
LAND USE						450		0						4.50
DIAMETER GRADE			<			150 1 in 179	Ø uPV(0		_ 1 in 8	3.33			<u>150</u> 9 1
EMBEDMENT TYPE														
DEPTH TO INVERT	 	4.339	4.319						4.351	4.331	4.313	_	4.351	4.271
JUNCTION INVERT LEVEL	 		26.145							25.354		25.330		25.354
SEWER INVERT LEVEL	 	24.811	24.831 2						25.274	25.294 2	25.330		25.274	25.354 2
DESIGN SURFACE LEVEL	 		29.150 2							29.624 2		29.642	. 1	29.624 2
	 	3.507).046		7.449	-).046	
SETOUT		E501138.507	N6929004.783						E501070.046	N6929044.396	E501067.449	N6929045.899	E501070.046	N6929044.396
RUNNING CHAINAGE			570.480			79.095				649.575 0.6	00	652.576		000 [.] 0
			5						1			-		6
				_ Scales	;									

06	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	31.01.24
05	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	25.08.23
04	SEWER LONGITUDINAL SECTION UPDATED	AO	SS	GE	03.07.23
03	SEWER LONGITUDINAL SECTION UPDATED	JG	EP	GE	24.10.22
02	SEWER LONGITUDINAL SECTION UPDATED	JG	EP	GE	11.10.22
01	ORIGINAL ISSUE	JG	EP	GE	19.07.22
Issue	Description	DR	СН	VE	Date
	100mm on C	Driginal			

6 (1 DNA		2/7 2/7 2/		END HTP HTP HTP HTP HTP HTP HTP HTP
LINE 7	m LINE 7			m m Image: Constraint of the second se
	DESIGN SURFACE LEVEL			
	EXISTING SURFACE LEVEL			
226	336			
600mm II 27 011 CI D 2	600mm IL 27.911 CLR 2 250mm IL 28.379 CLR 2			
	17.0 150Ø uPVC		>	18.0 1500 uPVC
4.027	1 in 180 1 in 180 1 in 18 1	1.754 00 1.754 00	1.732 1.732 4.313	1 in 83.33 1 in 83.33 1 in 83.33 1 in 167 1 in 167 1 in 167 1 in 83.33 1 in 83.33 1 in 167 1 in 167 1 in 167 1 in 83.33 1 in 83.33 1 in 167 1 in 167 1 in 167 1 in 83.33 1 in 83.33 1 in 167 1 in 167 1 in 167 1 in 107 1 in 167 1 in 167 1 in 167 1 in 107 1 in 167 1 in 167 1 in 167 1 in 107 1 in 167 1 in 167 1 in 167 1 in 107 1 in 167 1 in 167 1 in 167
25.370 25.370		26.707 26.747		25.330 25.330 25.605 25.605 25.605 25.810 25.810 25.979 25.979 25.979 25.979 25.979 25.979 25.051 25.979 25.124 26.124 26.124 26.124 26.124 26.124 26.124 26.124 26.124 26.124 26.124 26.124 26.124 26.124 26.124 26.124 26.126 26
29.397	29.397	28.501	28.510	29.642 29.642 29.985 30.073 30.073 30.073 30.236
	E501009.946 E501009.946 N6928940.531	E500949.846 N6928836.665		E501067.449 N6929045.899 E501047.606 E501047.606 E501035.859 E501035.859 E501035.859 E501029.921 E501025.986 E501023.682 E501023.682 E501024.566 E501024.566 E501024.566
2.999	00 117.000 120.00 7 120.00	237.001	3.000 540 [.] 001	8
r Planning 🗗 Uri	WOLTER consulting group	atus CONCEPT DESIGN NOT TO BE USED FOR CONST © Copyright reserved Original Issue Signatures awn A.OSORIO	ONLY	Project 4499-4651 MOUNT LINDESAY HIGHWAY, NORTH MACLEAN Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289

C NOT	Project 449			
] HIG			
Original I	ssue Signatures			
Drawn	A.OSORIO	Original Size	A1	Title
Designed	S.SEM	Height Datum	AHD	
Project Manager	B.KITSON	Grid		
Verified	G.ELLIS			

PRELIMINARY SEWER LONGITUDINAL SECTION SHEET 5 OF 8

Tel No: +61 7 3337 0000 www.arcadis.com/au Project No. Folder Prefix Zone | Stage | Phase Discipline Type Drawing No. Issue 30109334 - AAP - WS00OP - CV - SKT - 009E - 06 Date Plotted: 16 Feb 2024 - 05:49PM File Name: C:\Users\gp117798\DC\ACCDocs\Arcadis\AAU-30109334-4499-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Package-00_Civil_CV\Drawings\30109334-AAP-WS00OP-CV-SKT-009-SewerSketchPlan.dwg

V1

		6/8			/8		/8 E
STRUCTURE TYPE	P2-1200mn			P2	PE LINED	НТР	3.0m
STRUCTURE LID TYPE STRUCTURE DROP TYPE	<u>م</u>	1		<u>۵</u>			
JUNCTION LINE		LINE HC24	4				
DEPTH TO HC							
HC INVERT LEVEL							
HC TYPE							
HC LOT No							
CH. FROM D/S STRUC/ BEND							
			_				
				DESIGN SURFACE G SURFACE LEVEL	I		
		+					
		8					
		0					
DATUM R.L.		18.0					
DATUM R.L. LAND USE		18.0		4500			
LAND USE DIAMETER		18.0	1 in 167	150Ø uPVC	_ 1 in	167	
LAND USE		18.0	1 in 167	150Ø uPVC	_ 1 in	167	
LAND USE DIAMETER GRADE	4.040	<	1 in 167	150Ø uPVC	4.000 A	167 167 080	
LAND USE DIAMETER GRADE EMBEDMENT TYPE	4.040	4.020	1 in 167	~~~>	<	×	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL		26.662 4.020	1 in 167	4.020	4.000	3.980	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL	26.196	26.216 26.662 4.020 A A	1 in 167	~~~>	26.859 4.000 A	×	76 002
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL		26.662 4.020	1 in 167	4.020	4.000	3.980	76 002
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL	26.196	30.236 26.216 26.662 4.020 ^A	1 in 167	26.839	30.859 26.859 4.000 A	26.993 3.980	20.072 26.002
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL		N6929115.082 30.236 26.216 26.662 4.020	1 in 167	4.020	N6929217.585 30.859 26.859 4.000	E501044.930 26.993 3.980	N6020230 506 20 072 25 002
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL	26.196	30.236 26.216 26.662 4.020 ^A	1 in 167	26.839	N6929217.585 30.859 26.859 4.000	E501044.930 26.993 3.980	NG070730 506 20 072 25 002
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT	26.196	N6929115.082 30.236 26.216 26.662 4.020		26.839	30.859 26.859 4.000 A	E501044.930 26.993 3.980	NE070730 F06 70 073 76 003
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT	26.196	OD 87.847 N6929115.082 30.236 26.216 26.662 4.020 A		26.839	N6929217.585 30.859 26.859 4.000	E501044.930 26.993 3.980	NG070730 506 20 072 25 002
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT	26.196	OD 87.847 N6929115.082 30.236 26.216 26.662 4.020 A	103.729	E501040.464 26.839 4.020	191.576 N6929217.585 30.859 26.859 4.000	095 E501044.930 26.993 3.980 V	214 D35 N6020230 506 20 073 26 003
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT	26.196	OD 87.847 N6929115.082 30.236 26.216 26.662 4.020	ales 0 10 20 40 DRZ	E501040.464 26.839 4.020	N6929217.585 30.859 26.859 4.000	E501044.930 26.993 3.980	214 035 N6929239.596 30 973 26 993
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT	26.196	H 26.216 26.662 4.020	ales 0 10 20 40 DRZ	<pre></pre>	191.576 N6929217.585 30.859 26.859 4.000	095 E501044.930 26.993 3.980 V	-

evor WOLTER consulting group Planning 🗗 Urban Design 🛞 Landscape 💭 Environment 🕂 Surveying tect

-

Client

er 🔶	NOT	ONCEPT D TO BE USED F © Copyright re ssue Signatures	OR CONST		Project 4499-4651 MOUNT LINDESAY HIGHWAY, NORTH MACLEAN	Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000		
	Drawn	A.OSORIO	Original Size	A1		ABN 76 104 485 289 Tel No: +61 7 3337 0000		
	Designed	S.SEM	Height Datum	AHD	PRELIMINARY SEWER	www.arcadis.com/au		
	Project Manager	B.KITSON	Grid		SHEET 6 OF 8	Project No. Folder Prefix Zone Stage Phase Discipline Type Drawing No		
	Verified	G.ELLIS				30109334 - AAP - WS00OP - CV - SKT - 09H		
Date Plotted: 16 Feb 2024 - 05:49	PM File Name:	C:\Users\gp117798\D0	C\ACCDocs\Arca	ldis\AAU-30109334-449	9-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Package-00_Civil_(CV\Drawings\30109334-AAP-WS00OP-CV-SKT-009-SewerSketchPlan.dwg		

99-4651 MOUNT LINDESAY	
GHWAY, NORTH MACLEAN	

Project No. Folder Prefix Zone | Stage | Phase Discipline Type Drawing No. Issu

30109334 - AAP - WS00OP - CV - SKT - 09H - 02

STRUC/ BEND/ END NAME	(5/4) (1/100)	(2/100) (3/100)	(4/100)	(5/100)	(6/100)	(7/100)	(8/100)
STRUCTURE TYPE			5	2	2 2	2	
STRUCTURE LID TYPE STRUCTURE DROP TYPE			<u>م</u>	۵			
JUNCTION LINE	LINE 100						
DEPTH TO HC							
HC INVERT LEVEL							
HC TYPE							
HC LOT No							
CH. FROM D/S STRUC/ BEND							
		DESIGN SURFACE LE EXISTING SURFACE LEVEL -					
DATUM R.L. LAND USE DIAMETER GRADE EMBEDMENT TYPE	<	5Ø uPVC 179 1 in 179	1 in 179	1 in 179	150Ø uPVC 1 in 179	1 in 179	1 in 179
DEPTH TO INVERT	4.279 4.279 4.160 4.160	4.074 4.074 4.958 4.971	4.877	4.320	3.465 3.445	2.050	.413
	4 4 4			¬ ¬ ¬			
JUNCTION INVERT LEVEL	4 4 55 51.4		െ റ	~ ~ ~		 ب	
SEWER INVERT LEVEL	21.465 21.465 21.494 21.494	21.542 21.542 21.890 21.877 21.877	22.56	22.957	23.636	24.245	24.91
DESIGN SURFACE LEVEL	25.744 25.654	25.615 26.848	27.426	27.296	27.101	26.295	26.330
SETOUT	E501671.423 V6928765.668 E501676.400 V6928764.033	E501680.217 V6928756.465 E501660.663 V6928697.412	E501619.950 V6928584.530	E501596.540 V6928519.445	E501556.740 N6928408.630	E501523.628 N6928316.437	E501404.563
RUNNING CHAINAGE	2 2 00 0 5.239 5.239 5.239	176 22.206 22 176 20.206 22 176 20.206 22 176 20 176 20 10	119.999 Z	69.167	117.746	97.959	120.000 Z 62.00
	100			~	۳ ۲	4	<u></u>
	Scales 0 1 0 1 0 1 0 1 0 1	0 20 40 60 80 1 : 1000	100m Surveyor	Surveying Charter	Status CONCEPT DESIGN ONLY NOT TO BE USED FOR CONSTRUCTI © Copyright reserved Original Issue Signatures Drawn A.OSORIO Original Size	HIGHWAY, NORTH MACLEA	AN Arcadis Australia Pacific Pty Limited Level 35, 111 Eagle Street BRISBANE QLD 4000 ABN 76 104 485 289
	0 ✓ VERT	2 4 6 8 1 : 100		Hall	DesignedS.SEMHeight DatumAlProject ManagerB.KITSONGrid	PRELIMINARY SEWER LONGITUDINAL SECTION SHEET 7 OF 8	Project No. Folder Prefix Zone Stage Phase Discipline Type
Description DR	CH VE Date			Data Diattad	Verified G.ELLIS	0100224 4400 4651 Mount Lindoogy Highway/Draiget Eileg\01, WID\01, Dadkag	30109334 - AAP - WS00OP - CV - SKT

		(8/100				(9	/100	(10/	100	
STRUCTURE TYPE		P2				6	-	P2		
STRUCTURE LID TYPE		8				ď	1	Ш		
STRUCTURE DROP TYPE JUNCTION LINE	 									
DEPTH TO HC	 									
HC INVERT LEVEL HC TYPE										
HC LOT No										
CH. FROM D/S STRUC/ BEND										
								/		
				INDICATIV	E DESIG	N —				
					CE LEVI			гт		
		I -			_~			~	_/~_~	
			7.0							
DATUM R.L.		1	7.0							
LAND USE DIAMETER		1	7.0	1 in 1	79		1 in	179		
LAND USE		1	7.0	1 in 1	79		1 in	179		
LAND USE DIAMETER GRADE EMBEDMENT TYPE		~		1 in 1	79		><	>	3.279 A	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT		1.413 1.202 A A L		1 in 1	79	1.350	><	179	3.279 A	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL		1.413 1.203 A A	2	1 in 1	79		1.320	3.319		
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT		24.917 1.413 1.413 A A	0.60.1	1 in 1	79	25.376 1.350	25.406 1.320	>	25.561	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL		1.413 1.203 A A	0.60.1	1 in 1	79		1.320	3.319		
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL		24.917 1.413 26.330 24.037 1.303 A A		1 in 1	79	25.376	26.725 25.406 1.320	25.521 3.319	28.840 25.561	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL		24.917 1.413 26.330 24.037 1.303 A A		1 in 1	79		26.725 25.406 1.320	3.319	28.840 25.561	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT		E501404.563 24.917 1.413		1 in 1		25.376	N6928341.158 26.725 25.406 1.320	E501310.603 25.521 3.319	N6928328.364 28.840 25.561	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL		E501404.563 24.917 1.413				25.376	26.725 25.406 1.320	E501310.603 25.521 3.319	28.840 25.561	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT		E501404.563 24.917 1.413				25.376	N6928341.158 26.725 25.406 1.320	E501310.603 25.521 3.319	N6928328.364 28.840 25.561	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT		E501404.563 24.917 1.413	000			25.376	N6928341.158 26.725 25.406 1.320	E501310.603 25.521 3.319	N6928328.364 28.840 25.561	
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT		E501404.563 24.917 1.413	000	78.3		40	9 679.182 N6928341.158 26.725 25.406 1.320	E501310.603 25.521 3.319	N6928328.364 28.840 25.561	100m
LAND USE DIAMETER GRADE EMBEDMENT TYPE DEPTH TO INVERT JUNCTION INVERT LEVEL SEWER INVERT LEVEL DESIGN SURFACE LEVEL SETOUT		E501404.563 24.917 1.413	000	78.3	90	E501326 785	9 679.182 N6928341.158 26.725 25.406 1.320	E501310.603 25.521 3.319	699.811 N6928328.364 28.840 25.561	100m

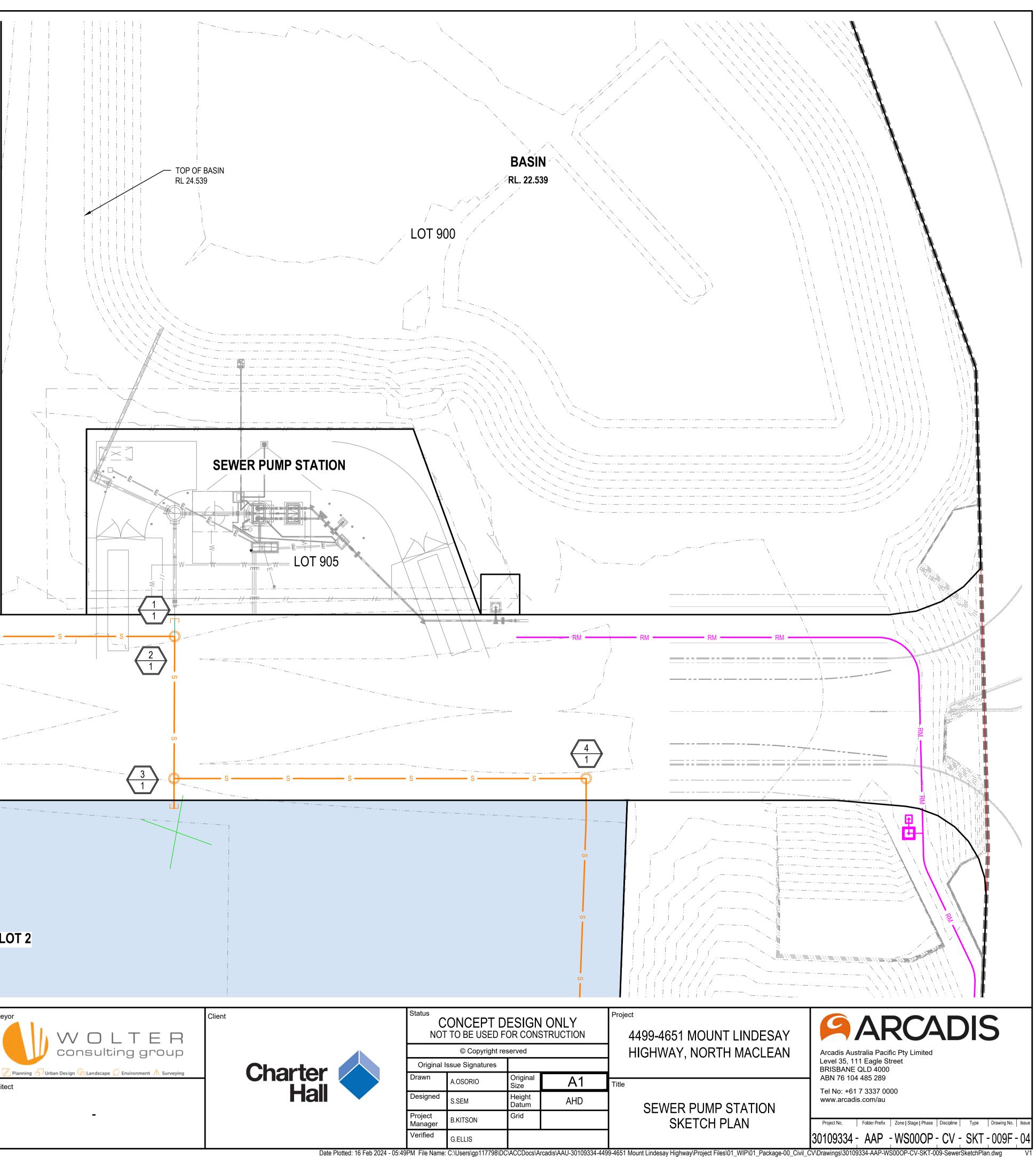
DR CH VE Date

Description

100mm on Original

Issue

(11	/100	(12/	100	(13/10
P2		P2		P2
۵		۵		۵
EXISTING				
		· · · · · · · · · · · · · · · · · · ·		
			μ 	
150Ø uPV0		in 170	1 in 179	>
1 in 179 >	۱ <	in 179	<	~~>
3.616	3.596	3.124	3.104	2.388
رى ب				
26.233	26.253	26.925	26.945	27.393
26.2		26.5		
	29.849		30.049	
E501192.090	N6928347.199	E501073.577	N6928366.034	E500994.569
	2			·
120.000	819.811	20.000	0339.811 000.08	

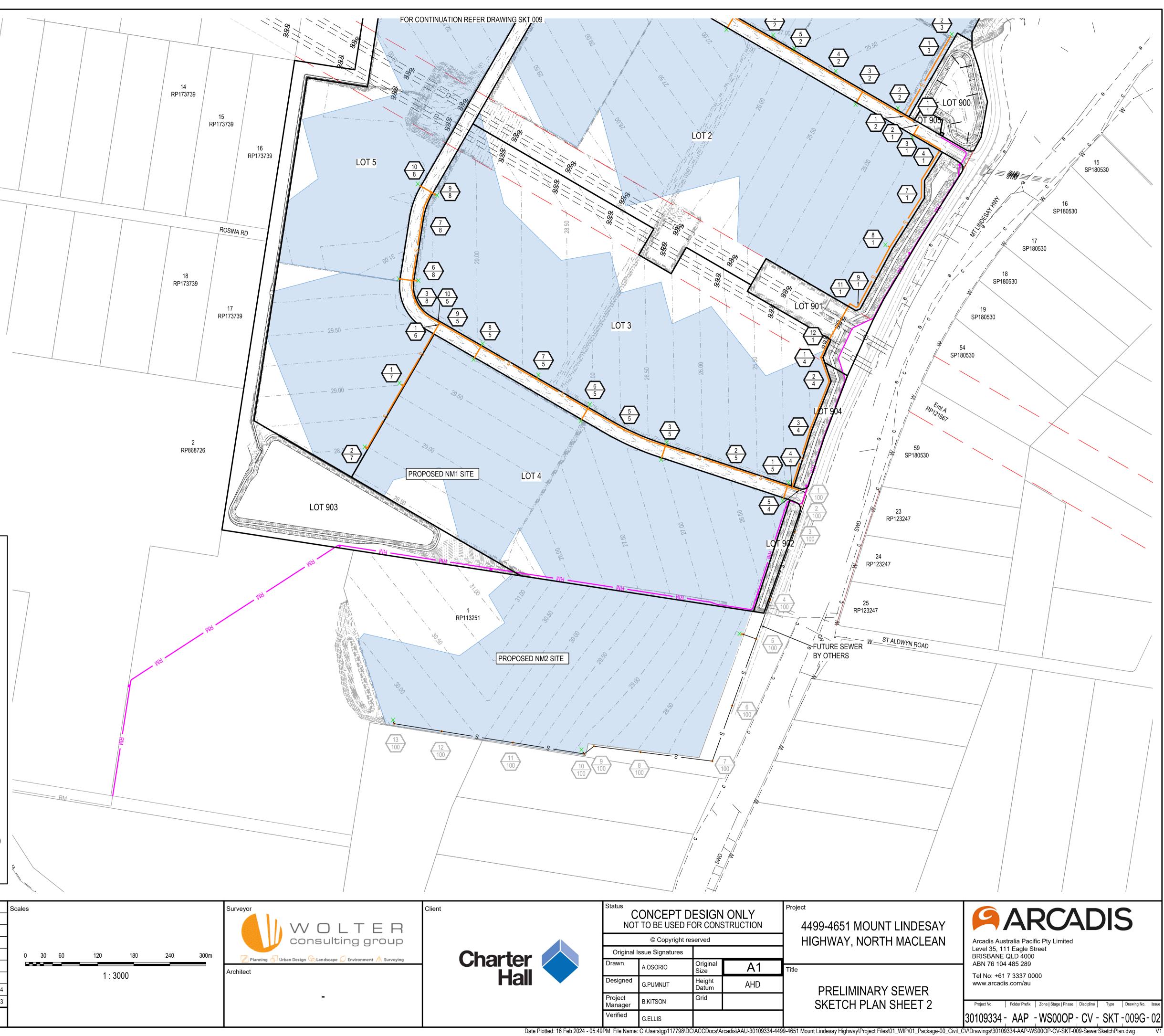

WOLTER consulting group	Client	CONCEPT DESIGN ONLY NOT TO BE USED FOR CONSTRUCTION4499-4651				Project 4499-4651 MOUNT LINDESAY HIGHWAY, NORTH MACLEAN	Arcadis Australia Pacific Pty Limited
Planning Urban Design Clandscape DEnvironment A Surveying	Charter		Issue Signatures			TIIGHWAT, NORTHWACLLAN	Level 35, 111 Eagle Street BRISBANE QLD 4000
ct		Drawn	A.OSORIO	Original Size	A1		ABN 76 104 485 289
	Hall	Designed	S.SEM	Height Datum	AHD	PRELIMINARY SEWER	Tel No: +61 7 3337 0000 www.arcadis.com/au
-		Project Manager	B.KITSON	Grid		SHEET 8 OF 8	Project No. Folder Prefix Zone Stage Phase Discipline Type Drawing
		Verified	G.ELLIS				30109334 - AAP - WS00OP - CV - SKT - 09
	Date Plotted: 16 Feb 2024 - 05:4	19PM File Name	: C:\Users\gp117798\D0	C\ACCDocs\Arc	adis\AAU-30109334-44	499-4651 Mount Lindesay Highway\Project Files\01_WIP\01_Package-00_Civil_	_CV\Drawings\30109334-AAP-WS00OP-CV-SKT-009-SewerSketchPlan.dwg

Project No. Folder Prefix Zone | Stage | Phase Discipline Type Drawing No. Issue

30109334 - AAP - WS00OP - CV - SKT - 09K - 01

LEGEND							
						ι ο Ι	:
TOP OF BATTER							
TOE OF BATTER							
						S /	
DESIGN CONTOUR MINOR							
EXISTING CONTOURS						j	
\rightarrow – \rightarrow – \rightarrow – \rightarrow OVERLAND FLOW PATHS						s S	
PROPOSED SEWER GRAVITIN PROPOSED SEWER MANHOLE							;
WATSON YOUNG MASTERPLA							
LAYOUT P6							
NOTE:						S	
- SEWER PUMP STATION OPTION 2 ARRANGEMENT AS PER							/
LOGAN WATER CONCEPT DESIGN INFORMATION RECEIVE						V /	
16 th SEPTEMBER 2022. - FINISHED SURFACE LEVELS SHOWN ON THE PLANS.					1	ļ	
						avi i	
				į.			
						ν ν	
LOT 1							
							į
			•		N/ / /		
						S S	
	•						
			, 	/			
						ر م	
						Ĩ	··
			<u></u> /Г		~~·~·	<u> </u>	
S S S S	S		- s(s/	S		;
				2		1	
				2		2	
		·····					
		·····					
		Scale	s				Sun
			S				Sun
		Scale	S				Sun
			S				Sun
		25.08.23 03.07.23		10	15	20 25,	Arct
D3UDPATED SEWER PUMP STATION LAYOUTAOD2UDPATED SEWER PUMP STATION LAYOUTJG	SS GE EP GE	25.08.23 03.07.23 24.10.22	s 5	10		20 25	Arct
03 UDPATED SEWER PUMP STATION LAYOUT AO 02 UDPATED SEWER PUMP STATION LAYOUT JG 01 ORIGINAL ISSUE JG	SS GE EP GE EP GE	25.08.23 03.07.23 24.10.22 23.08.22		10 1 : 2		20 25	Arct
3UDPATED SEWER PUMP STATION LAYOUTAO2UDPATED SEWER PUMP STATION LAYOUTJG	SSGEEPGEEPGECHVE	25.08.23 03.07.23 24.10.22				20 25	/

<u>NOTE</u>:


- THIS DRAWING IS BASED ON:
- -- EXISTING LIDAR SURVEY FROM WOLTERS RECEIVED 09.03.2022.
- -- FINISHED SURFACE LEVELS SHOWN ON THE PLANS.

LOT SERVICEABILITY CATCHMENTS BASED ON THE FOLLOWING DESIGN CRITERIA.

- 3.0m DEEP CONNECTION AT SEWER MAIN / BOUNDARY U.N.O.
 1:100 INTERNAL GRADING, PERPENDICULAR TO LOT
- ORIENTATION (WORST CASE RUN).
 MAX 0.60m COVER TO PROPOSED FINISH SURFACE AT UPPER MOST REACH.

LEGEND	
0.5%	DESIGN GRADING
-··-···29.5·-··-·	PROPOSED FINISH SURFACE CONTOUR
\rightarrow - \rightarrow - \rightarrow - \rightarrow -	- OVERLAND FLOW PATHS
SWD	PROPOSED STORMWATER DRAINAGE
RM	PROPOSED SEWER RISING MAIN
S	PROPOSED SEWER GRAVITY MAIN
٥	PROPOSED SEWER MANHOLE
×	PROPOSED LOT CONNECTION POINT
SWD	EXISTING STORMWATER DRAINAGE
oh	EXISTING OVERHEAD POWER LINE
w	EXISTING WATER MAIN
e e	EXISTING UNDERGROUND ELECTRICITY
c	EXISTING COMMUNICATIONS
	POWERLINK EASEMENT
RM	FUTURE SEWER RISING MAIN (BY OTHERS)
s	- FUTURE SEWER GRAVITY MAIN (BY OTHERS)
	APPROXIMATE LOT SERVICEABILITY CATCHMENT - REFER NOTES

100mm on Original

						Scales Surv	veyor
						0 30 60 120 180 240 300m	F
						4 . 2000 Arch	
						1 : 3000 Arch	1000
02	SEWER LAYOUT AND LONGITUDINAL SECTION UPDATED	GP	TF	GE	31.01.24		
01	ORIGINAL ISSUE	GP	TF	GE	25.08.23		
Issue	Description	DR	СН	VE	Date		

APPENDIX C

EP & Sewer Sizing Calculations

		Author:	Hannah Qiao												
PROJECT NUMBER: DATE:	10037557 6/02/2024		Sewer Sizing Calculations	Updated ID, same catchment	Structure Removed	Updated ID and Catchment			nultancy nd			flow factor to 75% d velocity factor to 75%		AS2200 AS2200	
Structure #	Contributing Lots	EPs	Factored EPs matching Logan Water Ultimate Loading	ADWF	d	PDWF	PWWF (L/s)	Downstream Pipe DN	Pipe Grade min.	100% Pipe Capacity Qo (L/s)	100% Velocity Vo (m/s)	Capacity at 75% depth (L/s)	Velocity at 75% depth (m/s)	75% Pipe Depth Flow Exceeds PWWF?	75% Depth Velocity within 3m/s?
4/100	NM2-EXT	467	471	0.90	2.37	2.13	4.57	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
17/1	NM2-EXT	467	471	0.90	2.37	2.13	4.57	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
2-3/100	Lot 13, Lot 12, Lot 14, 75% of Lot 11, Lot 15, EXT-NM2	1652	1665	3.18	2.37	7.53	16.18	DN225	0.56%	33.0	0.85	30.20	0.98	YES	YES
3/4	Lot 13, Lot 12, Lot 14, 75% of Lot 11, Lot 15, EXT-NM2	1652	1665	3.18	2.37	7.53	16.18	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
2/4	Lot 13, Lot 12, Lot 14, Lot 11, Lot 15, EXT-NM2	1720	1733	3.31	2.37	7.84	16.85	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
1/4	Lot 13, Lot 12, Lot 14, Lot 11, Lot 15, EXT-NM2	1720	1733	3.31	2.37	7.84	16.85	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
12/1	Lot 13, Lot 12, Lot 14, Lot 11, Lot 15, EXT-NM2	1720	1733	3.31	2.37	7.84	16.85	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
11/1	Lot 13, Lot 12, Lot 14, Lot 11, Lot 15, EXT-NM2	1720	1733	3.31	2.37	7.84	16.85	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
8/1	Lot 13, Lot 12, Lot 14, Lot 11,30% of Lot 10, Lot 15, EXT-NM2	1860	1874	3.58	2.37	8.48	18.22	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
7/1	Lot 13, Lot 12, Lot 14, Lot 11,30% of Lot 10, Lot 15, EXT-NM2	1860	1874	3.58	2.37	8.48	18.22	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
4/1	Lot 13, Lot 12, Lot 14, Lot 11,30% of Lot 10, Lot 15, EXT-NM2	1860	1874	3.58	2.37	8.48	18.22	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
3/1	Lot 13, Lot 12, Lot 14, Lot 11, Lot 15, EXT-NM2, 50% of Lot 10	1871	1886	3.60	2.37	8.53	18.33	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
1/1	All	2764	2785	5.32	2.37	12.60	27.08	-	-	-	-		-		-
3/10	50% of Lot 8	42	42	0.08	2.37	0.19	0.41	DN150	1.00%	14.0	0.86	12.81	0.99	YES	YES
2/10	50% of Lot 8	42	42	0.08	2.37	0.19	0.41	DN150	1.00%	14.0	0.86	12.81	0.99	YES	YES
3/9	50% of Lot 8	42	42	0.08	2.37	0.19	0.41	DN150	1.00%	14.0	0.86	12.81	0.99	YES	YES
1/9	Lot 8, Lot 7	193	195	0.37	2.37	0.88	1.89	DN150	1.00%	14.0	0.86	12.81	0.99	YES	YES
13/2	Lot 8, Lot 7	193	195	0.37	2.37	0.88	1.89	DN150	1.00%	14.0	0.86	12.81	0.99	YES	YES
12/2	Lot 8, Lot 7, Lot 6, 30% of Lot 9	301	303	0.58	2.37	1.37	2.95	DN150	0.60%	11.0	0.67	10.07	0.77	YES	YES
11/2	Lot 8, Lot 7, Lot 6, 30% of Lot 9, Lot 5	331	334	0.64	2.37	1.51	3.24	DN150	0.60%	11.0	0.67	10.07	0.77	YES	YES
12/2	Lot 8, Lot 7, Lot 6, 50% of Lot 9, Lot 5	384	387	0.74	2.37	1.75	3.76	DN150	0.60%	11.0	0.67	10.07	0.77	YES	YES
8/2	Lot 8, Lot 7, Lot 6, 60% of Lot 9, Lot 5	410	414	0.79	2.37	1.87	4.02	DN150	0.60%	11.0	0.67	10.07	0.77	YES	YES
7/2	Lot 8, Lot 7, Lot 6, Lot 9, Lot 5, Lot 4	551	555	1.06	2.37	2.51	5.40	DN150	0.60%	11.0	0.67	10.07	0.77	YES	YES
6/2	Lot 8, Lot 7, Lot 6, Lot 9, Lot 5, Lot 4, 50% of Lot 3	578	582	1.11	2.37	2.63	5.66	DN150	0.60%	11.0	0.67	10.07	0.77	YES	YES

Structure #	Contributing Lots	EPs	Factored EPs matching Logan Water Ultimate Loading	ADWF	d	PDWF	PWWF (L/s)	Downstream Pipe DN	Pipe Grade min.	100% Pipe Capacity Qo (L/s)	100% Velocity Vo (m/s)	Capacity at 75% depth (L/s)	Velocity at 75% depth (m/s)	75% Pipe Depth Flow Exceeds PWWF?	75% Depth Velocity within 3m/s?
5/2	Lot 8, Lot 7, Lot 6, Lot 9, Lot 5, Lot 4, Lot 3	605	610	1.16	2.37	2.76	5.93	DN150	0.60%	11.0	0.67	10.07	0.77	YES	YES
4/2	Lot 8, Lot 7, Lot 6, Lot 9, Lot 5, Lot 4, Lot 3, 33% of Lot 2	634	639	1.22	2.37	2.89	6.21	DN150	0.60%	11.0	0.67	10.07	0.77	YES	YES
3/2	Lot 8, Lot 7, Lot 6, Lot 9, Lot 5, Lot 4, Lot 3, 33% of Lot 2, 50% of Lot 10	786	791	1.51	2.37	3.58	7.69	DN150	4.50%	22.5	1.7	20.59	1.96	YES	YES
2/2	Lot 8, Lot 7, Lot 6, Lot 9, Lot 5, Lot 4, Lot 3, Lot 2, 50% of Lot 10	844	851	1.62	2.37	3.85	8.27	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
1/2	Lot 8, Lot 7, Lot 6, Lot 9, Lot 5, Lot 4, Lot 3, Lot 2, 50% of Lot 10, Lot 1	893	899	1.72	2.37	4.07	8.74	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
2/3	Lot 1	48	49	0.09	2.37	0.22	0.47	DN150	1.00%	14.0	0.86	12.81	0.99	YES	YES
1/3	Lot 1	48	49	0.09	2.37	0.22	0.47	DN150	4.00%	21.0	1.6	19.22	1.84	YES	YES
1/1	All	2764	2785	5.32	2.37	12.60	27.08	-	-	-	-		-	-	-

Structure #	Contributing Lots	EPs	Factored EPs matching Logan Water Ultimate Loading	ADWF	d	PDWF	PWWF (L/s)	Downstream Pipe DN	Pipe Grade min.	100% Pipe Capacity Qo (L/s)	100% Velocity Vo (m/s)	Capacity at 75% depth (L/s)	Velocity at 75% depth (m/s)	75% Pipe Depth Flow Exceeds PWWF?	75% Depth Velocity within 3m/s?
10/8	20% of Lot 13	71	72	0.14	2.37	0.32	0.70	DN150	1.00%	14.0	0.86	12.81	0.99	YES	YES
9/8	15% of Lot 12	36	36	0.07	2.37	0.17	0.35	DN150	1.00%	14.0	0.86	12.81	0.99	YES	YES
7/8	20% of Lot 13, 15% of Lot 12	107	108	0.21	2.37	0.49	1.05	DN150	0.59%	14.0	0.86	12.81	0.99	YES	YES
6/8	50% of Lot 13, 25% of Lot 12	238	240	0.46	2.37	1.09	2.33	DN150	0.59%	11.0	0.67	10.07	0.77	YES	YES
3/8	50% of Lot 13, 25% of Lot 12	238	240	0.46	2.37	1.09	2.33	DN150	0.59%	11.0	0.67	10.07	0.77	YES	YES
9/5	Lot 13, 25% of Lot 12	416	419	0.80	2.37	1.90	4.08	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
8/5	Lot 13, 33% of Lot 12, 25% of Lot 14	489	492	0.94	2.37	2.23	4.79	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
7/5	Lot 13, Lot 12, 25% of Lot 14	650	655	1.25	2.37	2.96	6.37	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
6/5	Lot 13, Lot 12, Lot 14, 10% of Lot 11	836	843	1.61	2.37	3.81	8.19	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
5/5	Lot 13, Lot 12, Lot 14, 10% of Lot 11	836	843	1.61	2.37	3.81	8.19	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
3/5	Lot 13, Lot 12, Lot 14, 33% of Lot 11, 33% of Lot 15	956	963	1.84	2.37	4.36	9.36	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
2/5	Lot 13, Lot 12, Lot 14, 33% of Lot 11, 33% of Lot 15	956	963	1.84	2.37	4.36	9.36	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
1/5	Lot 13, Lot 12, Lot 14, 75% of Lot 11, Lot 15	1185	1194	2.28	2.37	5.40	11.61	DN225	0.35%	26.0	0.67	23.79	0.77	YES	YES
14/100	10% of NM2-EXT	47	47	0.09	2.37	0.21	0.46	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
13/100	10% of NM2-EXT	47	47	0.09	2.37	0.21	0.46	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
12/100	10% of NM2-EXT	47	47	0.09	2.37	0.21	0.46	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
11/100	40% of NM2-EXT	187	188	0.36	2.37	0.85	1.83	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
10/100	40% of NM2-EXT	187	188	0.36	2.37	0.85	1.83	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
9/100	40% of NM2-EXT	187	188	0.36	2.37	0.85	1.83	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
8/100	40% of NM2-EXT	187	188	0.36	2.37	0.85	1.83	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES

Structure #	Contributing Lots	EPs	Factored EPs matching Logan Water Ultimate Loading	ADWF	d	PDWF	PWWF (L/s)	Downstream Pipe DN	Pipe Grade min.	100% Pipe Capacity Qo (L/s)	100% Velocity Vo (m/s)	Capacity at 75% depth (L/s)	Velocity at 75% depth (m/s)	75% Pipe Depth Flow Exceeds PWWF?	75% Depth Velocity within 3m/s?
7/100	40% of NM2-EXT	187	188	0.36	2.37	0.85	1.83	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
6/100	NM2-EXT	467	471	0.90	2.37	2.13	4.57	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
5/100	NM2-EXT	467	471	0.90	2.37	2.13	4.57	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
2/4	NM2-EXT	467	471	0.90	2.37	2.13	4.57	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
2/7	40% of Lot 13	142	143	0.27	2.37	0.65	1.39	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
1/7	50% of Lot 13	178	179	0.34	2.37	0.81	1.74	DN150	0.56%	10.5	0.64	9.61	0.74	YES	YES
1/7	60% of NM2-EXT	280	282	0.54	2.37	1.28	2.74	DN150	1.00%	14.0	0.86	12.81	0.99	YES	YES

APPENDIX D

Logan Water Technical Memorandum DD8001 North Maclean

Technical Memorandum

То:	Water Infrastructure Project Development Program Le	
From:	M Seymour (Planning Engineer)	RELIABLE
Actioned by:	Click or tap here to enter text.	
Date:	21 July 2022	
Reference:	DD8001 North Maclean	
Subject:	Load Projections for North Maclean PDA	

1. Overview

The purpose of this memo is to confirm the estimated loads associated with the North Maclean PDA based on the best available current information as provided by developers.

1.1 Developer Information

The developer of "Charter Hall – Industrial Subdivision", 4499-4651 Mount Lindesay Highway, North Maclean is represented by Arcadis who have provided several plans showing the extent of the development that they are proposing. These are included in Attachment A. The development areas within the North Maclean PDA are shown in Figure 1.

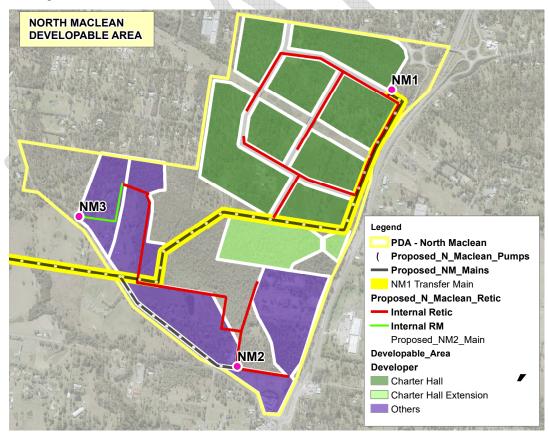
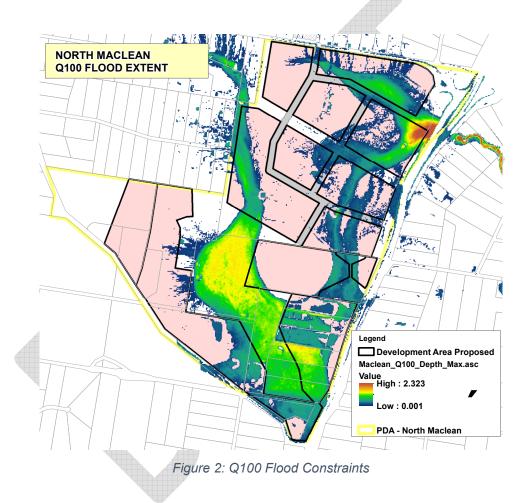


Figure 1: Development areas

The development areas include:

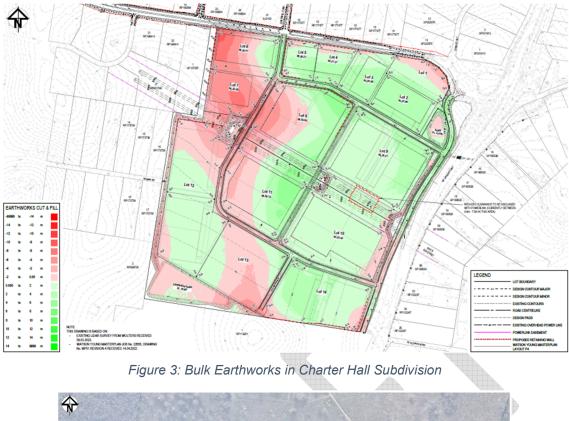
• Charter Hall subdivision which is the main focus for development (represented by Arcadis)

Task ID | Page 1 of 10 | Date Issued: xx/xx/xxxx - Rev: xx | DM #


- Charter Hall extension immediately south of the main focus of development (also represented by Arcadis
- Development areas draining to NM2 and NM3 (number of individual property owners)

Preliminary development plans have been submitted by Arcadis (developer's representative) for areas draining to NM1 transfer pump station.

The North Maclean PDA has been designated as an industrial precinct. The Charter Hall sub-division has not indicated the type of development (i.e. light, medium or heavy industry) and this will depend on the individual lot sales.


1.1.1 Development Constraints

The main constraint within the North Maclean PDA is flooding and Arcadis is proposing significant earthworks to raise the area above the Q100 flood level shown in Figure 2. They will also be installing stormwater basins and drainage channels.

Arcadis have submitted bulk earthworks plans for the areas proposed for development. These are shown in Figure 3 and Figure 4.

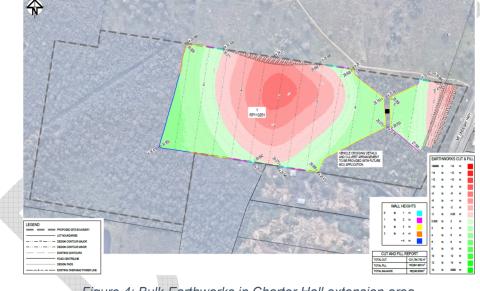


Figure 4: Bulk Earthworks in Charter Hall extension area.

2. Load assumptions

The North Maclean PDA is a designated industrial use precinct. The load estimates have been based on the following table extract from the task report "Infrastructure Demand Model 2020 (IP0017), September 2021. The industrial conversion rates were based on typical water consumption rates associated with several non-residential uses along with a return to sewer factor.

			on Rates - iter			on Rates - /age
IDM Development Type	Average Water Consumption Method Adopted	Gross Site Area Water EP/HA (Density Gross)	Gross Floor Area Water EP/HA (Density GFA)	Return to Sewer (%)	Gross Site Area Water EP/HA (Density Gross)	Gross Floor Area Water EP/HA (Density GFA)
Commercial	GFA, 5 th -95 th %ile	-	55.90	0.90	-	50.31
Office	As per Commercial		55.90	0.90		50.31
Warehouse Distribution	As per Commercial		55.90	0.90		50.31
Education	GFA, 5th-95th %ile	-	105.30	0.80	-	84.24
Health	GFA, 5th-95th %ile	-	226.50	0.90	-	203.85
Industry Heavy	50% above Light Industrial	-	56.60	0.80	-	45.28
Industry Medium	25% above Light Industrial	-	47.25	0.80	-	37.80
Industry Light	GFA, 5th-95th %ile	-	37.80	0.80	-	30.24
Sport Recreation	Gross, 10th-90th %ile	1.05	-	0.90	0.945	-
Rural	Based on Water Meter Consumption	-	-	-	-	-
Retail Services	GFA, 5th-95th %ile	-	97.60	0.90	-	87.84
Showroom Bulk Goods	GFA, 5 th -95 th %ile	-	110.80	0.90	-	99.72
Accommodation	GFA, 5th-95th %ile	-	233.90	0.90	-	210.51

Table 4-2: Non-residential conversion rates – Base Year and/or growth years*

Reference: Table 7.2 Development of Infrastructure Demand Model, LWIA 2018 (PI-181).

Table 1: Non-residential conversion rates

Industrial use was subdivided into consumption rates for light, medium and heavy industry. It should be noted that these are averages and in the case of very high users such as bottling plants, abattoirs, concrete manufacturers, etc individual assessments of load will be necessary.

The consumption rates have been based on GFA and it has been assumed that this is equal to 70% of the developable area that excludes roads, public open space and stormwater lagoons and drainage channels, etc.

The ultimate loads were determined for the developable areas assuming light, medium and heavy industrial uses.

In the absence of any growth rate assumptions from the developer it has been assumed that.

- North Maclean 1 Pump Station catchment
 - o 10% of the ultimate load in 2023
 - o 90% of ultimate load in 2051
- North Maclean 2 and 3 pump station catchments
 - o 10 % of the ultimate load in 2026
 - o 90% of the ultimate load in 2051

Ultimate development is assumed in 2081 and linear growth has been assumed between 2023 / 2026 and 2051.

I should be noted that the growth rates are unlikely to have any impact on the transfer infrastructure which has been sized on ultimate loads.

3. Load Estimates and Projection

Figure 5 includes the pump stations servicing the North Maclean PDA.

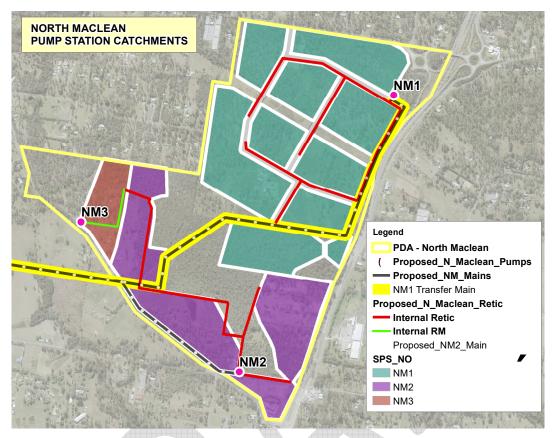


Figure 5: North Maclean pump station catchments

There are three pump stations, NM1 and NM2 are transfer pump stations and inject into a common rising main. NM3 is an internal pump station, and it transfers load to NM2 pump station via internal reticulation.

The ultimate loads have been estimated for the three pump stations and these are included in Table 2.

Table 2: Ultimate Loads

SPS NO	Developable Lot Area Ha	GFA Ha (1)	Light Ind EP (2)	Med Ind EP (3)	Heavy Ind EP (4)	IDM EP ULT
NM1	<mark>105</mark>	74	2,228	<mark>2,785</mark>	3,336	3,460
NM2	55	38	1,164	1,455	1,743	1,880
NM3	11	8	230	288	345	255
NM2 Total	66	46	1,394	1,743	2,088	2,135
Totals:	171	120	3,623	4,528	5,424	5,595

Note:

1. GFA assumed 70% of Developable Area

2. Light Industry: 30.24 EP / HA (based on GFA)

3. Medium Industry: 37.80 EP / HA (based on GFA)

4. Heavy Industry: 45.28 EP / HA (based on GFA)

Table 2 also includes ultimate loads for light, medium and heavy industry along with IDM2020 assumptions. The IDM_2020 load assumed in earlier studies was 5,595 EP.

The loads based on industrial use along with projections are included in Table 3.

Table 3: North Maclean PDA – Projected Loads

SPS NO	Sum of Sewer EP 2023	Sum of Sewer EP 2026	Sum of Sewer EP 2031	Sum of Sewer EP 2036	Sum of Sewer EP 2041	Sum of Sewer EP 2051	Sum of Sewer EP ULT	Developabl e Lot Area Ha	GFA Ha (1)
NM1	279	517	915	1,313	1,711	2,507	2,785	105	74
NM2		146	349	553	757	1,164	1,455	55	38
NM3		29	69	109	150	230	288	11	8
NM2 Total		174	418	662	906	1,394	1,743	66	46
Totals:	279	692	1,333	1,975	2,617	3,901	4,528	171	120

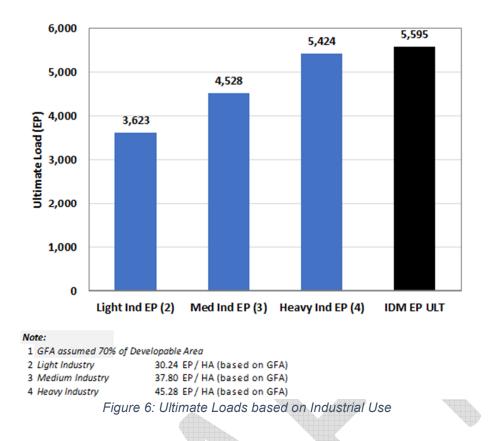
Medium Industry (3)

Liaht Industry (2)

Light maustry (2)									
SPS NO	Sum of Sewer EP 2023	Sum of Sewer EP 2026	Sum of Sewer EP 2031	Sum of Sewer EP 2036	Sum of Sewer EP 2041	Sum of Sewer EP 2051	Sum of Sewer EP ULT	Developabl e Lot Area Ha	GFA Ha (1)
NM1	223	414	732	1,050	1,369	2,005	2,228	105	74
NM2		116	279	442	605	931	1,164	55	38
NM3		23	55	87	120	184	230	11	8
NM2 Total		139	335	530	725	1,115	1,394	66	46
Totals:	223	553	1,067	1,580	2,094	3,121	3,623	171	120

Heavy Industry (4)

SPS NO	Sum of Sewer EP 2023	Sum of Sewer EP 2026	Sum of Sewer EP 2031	Sum of Sewer EP 2036	Sum of Sewer EP 2041	Sum of Sewer EP 2051	Sum of Sewer EP ULT	Developabl e Lot Area Ha	GFA Ha (1)
NM1	334	620	1,096	1,573	2,050	3,003	3,336	105	74
NM2		174	418	662	906	1,395	1,743	55	38
NM3		34	83	131	179	276	345	11	8
NM2 Total		209	501	793	1,086	1,670	2,088	66	46
Totals:	334	828	1,597	2,366	3,135	4,673	5,424	171	120


Note:

GFA assumed 70% of Developable Area
 Light Industry: 30.24 EP / HA (based on GFA)

Medium Industry: 37.80 EP / HA (based on GFA)
 Heavy Industry: 45.28 EP / HA (based on GFA)

The following Figure 6 compares the ultimate loads based on the industrial use and the IDM_2020 assumption.

The growth rates included in Table 3 are shown in the following Figure 7, Figure 8 and Figure 9 for the NM1 and NM2 transfer pump stations and the total North Maclean PDA load.

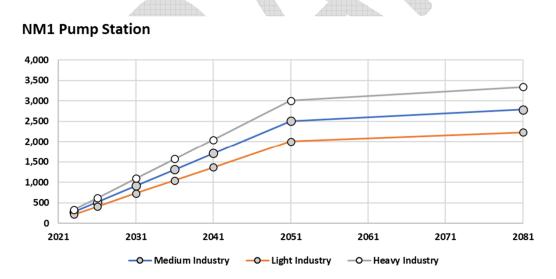


Figure 7: North Maclean 1 Pump Station – Growth Projections

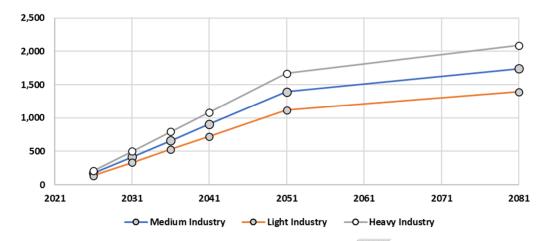
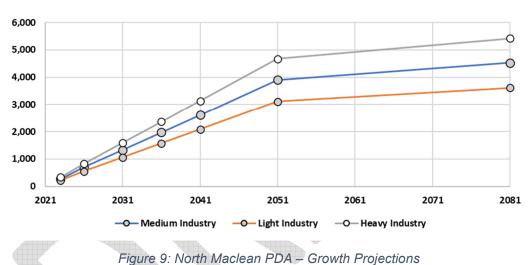



Figure 8: North Maclean 2 Pump Station – Growth Projections

North Maclean PDA Total

The type of industry will impact on the loads

- Light Industry 3,623 EP or 65% of IDM 2020 load (5,595 EP)
- Medium Industry 4,528 EP or 81% of IDM 2020 load (5,595 EP)
- Heavy industry 5,424 EP or 97% of IDM 2020 load (5,595 EP)

Indications are that the industrial development is unlikely to be heavy industrial use and will be a mix of light and medium industry.

4. Conclusions

In the absence of more accurate indication of uses it is proposed to adopt the loads based on medium industrial loads. It is unlikely to result in any significant reduction in infrastructure sizing and will allow for some flexibility if there is a need to service any industry with high sewage loads.

5. Recommendations

It is recommended that Logan Water adopt the loads included in Table 4 for development within the North Maclean PDA:

Table 4: Recommended Loads for North Maclean PDA (based on Medium Industrial use)

SPS NO	Sum of Sewer EP 2023	Sum of Sewer EP 2026	Sum of Sewer EP 2031	Sum of Sewer EP 2036	Sum of Sewer EP 2041	Sum of Sewer EP 2051	Sum of Sewer EP ULT
NM1	279	517	915	1,313	1,711	2,507	2,785
NM2		146	349	553	757	1,164	1,455
NM3		29	69	109	150	230	288
NM2 Total		174	418	662	906	1,394	1,743
Totals:	279	692	1,333	1,975	2,617	3,901	4,528

Signed by Date: Da

Attachment 1: Developer Drawings

