

North Maclean Industrial Estate

Traffic Impact Assessment

CH Hydrangea Pty Ltd

15th August 2023

PLANS AND DOCUMENTS referred to in the PDA DEVELOPMENT APPROVAL

Approval no.: **DEV2018/961/8** Date: **27/09/2023**

Gold Coast

Suite 26, 58 Riverwalk Avenue Robina QLD 4226 P: (07) 5562 5377 Brisbane

Level 2, 428 Upper Edward Street Spring Hill QLD 4000 P: (07) 3831 4442

Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 9557 6202

W: www.bitziosconsulting.com.au

E: admin@bitziosconsulting.com.au

Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

Document Issue History

Report File Name	Prepared	Revi	ewed	Issued	Date	Issued to
P5708.001R North Maclean Industrial Estate TIA	F. Jones & M. Else	M. Davidson	RPEQ 27524	F. Jones	15/08/2023	Erin Dyer via Email

CONTENTS

		Page
1.	INTRODUCTION	1
1.1	Background	1
1.2	Development Overview	1
1.3	Previous Approval	1
1.4	Scope of Works	2
2.	EXISTING CONDITIONS	3
2.1	Road Network Overview	3
2.2	Greater Flagstone Priority Development Area	4
2.3	Road Network Planning	4
3.	TRAFFIC GENERATION	5
3.1	Overview	5
3.2	Background Traffic Volumes	5
3.2.1	Overview	5
3.2.2	Southern Planned Catchment Traffic Generation	6
3.3	Development Traffic Generation	7
3.4	Network Distribution	7
3.5	Design Traffic Volumes	8
4.	TRAFFIC IMPACTS	9
5.	Access Review	10
5.1	Overview	10
5.2	Access Intersection 1	11
5.2.1	Overview	11
5.2.2	Access 1 SIDRA Assessment	11
5.3	Access Intersection 3	12
5.3.1	Overview	12
5.3.2	Access 3 Location	12
5.3.3	Access 3 Sight Distances	12
5.3.4	Access 3 Turn Warrants Assessment	13
5.3.5	Access 3 SIDRA Assessment	13
5.4	Access Intersection 4	15
5.4.1	Overview	15
5.4.2	Access 4 Location	15
5.4.3	Access 4 Sight Distances	15
	Access 4 Turn Warrants Assessment	15
	Access 4 SIDRA Assessment	16
6.	SITE LAYOUT REVIEW	17
6.1	Road Hierarchy	17
6.2	Road Cross Sections	17
6.3	Internal Road Volumes	18
6.4	Intersection Spacing	18
6.5	Internal Servicing	19
7.	SUMMARY	20

Tables

- Table 1.1: Proposed Changes to Previous Approval
- Table 2.1: Key Roads
- Table 2.2: Key Intersections
- Table 3.1: Trip Generation Rate Southern Planned Catchment
- Table 3.2: Directional Splits Southern Planned Catchment
- Table 3.3: Estimated Traffic Generation Southern Planned Catchment
- Table 3.4: Estimated Traffic Generation on Service Road Southern Planned Catchment
- Table 3.5: Trip Generation Rate
- Table 3.6: Directional Splits
- Table 3.7: Estimated Subject Site Traffic Generation ROL DA
- Table 3.8:Traffic Distribution
- Table 4.1: Estimated Subject Site Traffic Generation ROL DA
- Table 5.1: SIDRA Results: Access 1
- Table 5.2:
 Location Review: Access 3
- Table 5.3:
 Sight Distance Review: Access 3
- Table 5.4: Turn Warrants Results: Access 3
- Table 5.5: SIDRA Results: Access 3
- Table 5.6:
 Location Review: Access 4
- Table 5.7: Sight Distance Review: Access 4
- Table 5.8: Turn Warrants Results: Access 4
- Table 5.9: SIDRA Results: Access 4
- Table 6.1: Road Cross Sections
- Table 6.2: Road Cross Sections
- Table 6.3: Road Cross Sections

Figures

- Figure 2.1: Road Network
- Figure 2.2: Greater Flagstone Priority Development Area
- Figure 2.3: Crowson Road Layout
- Figure 3.1: Surrounding Future Developments
- Figure 5.1: Access Locations
- Figure 5.2: SIDRA Geometry: Access 1
- Figure 5.3: SIDRA Geometry: Access 3
- Figure 5.4: SIDRA Geometry: Access 4
- Figure 6.1: Road Hierarchya
- Figure 6.2: Internal Intersection Spacing
- Figure 6.3: Parking Restrictions

Appendices

- Appendix A: Development Plans
- Appendix B: Design Traffic Volumes
- Appendix C: SIDRA Outputs
- Appendix D: Swept Path Diagrams

1. INTRODUCTION

1.1 Background

Bitzios Consulting (Bitzios) has been commissioned by CH Hydrangea Pty Ltd to provide traffic engineering services in relation to a proposed industrial subdivision at 4499-4651 Mount Lindesay Highway, North Maclean (subject site). The subject site is formally described as Lot 39 on SP258739 and is located within the Logan City Council (Council) Local Government Area (LGA) and the Greater Flagstone Priority Development Area (PDA) and as such is under the jurisdiction of Economic Development Queensland (EDQ).

A PDA development approval (DEV2018/961) was granted over the subject site on 10 September 2021 for a Development Permit for Reconfiguring a Lot - 1 into 4 lots, plus roads and open space. In accordance with Section 99 of the Economic Development Act 2012 Charter Hall Group Pty Ltd requests to make a change to this PDA development approval. The amendment application seeks PDA development approval for a Development Permit for Reconfiguring a Lot - 1 into 11 lots (5 industrial/business lots, 1 drainage/open space lot, 1 pump station lot, 4 drainage lots). Importantly, key traffic engineering related items, such as access locations and yields will generally remain consistent with the PDA development approval.

1.2 Development Overview

The proposed subdivision includes the following yields:

- Use: Industry and Warehouse
- Yield: five (5) industrial lots across three (3) stages with a total estimated yield of 520,000m² GFA
- Access: via three (3) access intersections, consisting of:
 - One (1) all movements entry and left out only intersection on the future Mount Lindesay Highway Service Road (Service Road)
 - One (1) all movements intersections on the Service Road
 - One (1) all movements intersection via a fourth leg to the Crowson Lane / Greenhill Road intersection.

A copy of the development plans is included at Appendix A.

1.3 Previous Approval

As noted, the subject site has a previous DA approval for a four (4) lot industrial subdivision (DEV2018/961). Table 1.1 presents the proposed changes from a traffic engineering perspective.

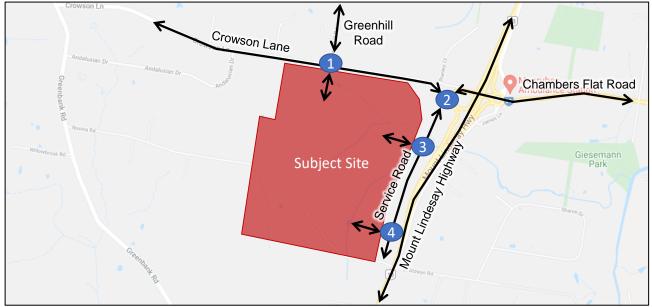
Element	Approved Development (DEV2018/961)	Proposed Development	Change
Uses	Industry and Warehouse	Industry and Warehouse	No change
Lots	4	5	+1
Ultimate Yields	503,000m ²	520,000m ²	+17,000m ²
Traffic Generation Rate	0.4 trips per 100m ² GFA	0.4 trips per 100m ² GFA	No change
Access	Three access locations. With two (2) on the Service Road and one (1) from a fourth leg of Greenhill Road / Crowson Lane intersection	two (2) on the Service Road and	No change

Table 1.1: Proposed Changes to Previous Approval

In summary, the proposal seeks to retain the intended land uses and access conditions to the surrounding road network, while minorly increasing the development yields.

1.4 Scope of Works

The scope of this TIA included the following tasks:


- Estimating the expected additional traffic generation as a result of the proposed increases in yield
- Estimating future year design volumes at the proposed access intersection for the proposed year of opening and a 10-year design horizon
- Undertaking SIDRA modelling for the proposed access intersections to determine the required controls and lane requirements to support the proposed development. This will be based on ultimate traffic volumes for the external network sourced from EDQ / DEV2018/961
- Reviewing the proposed access layout and treatments against Austroads Guide to Road Design and relevant industry guidelines and standards
- Reviewing the proposed site arrangements against relevant standards and guidelines.

2. EXISTING CONDITIONS

2.1 Road Network Overview

Figure 2.1 illustrates key elements of the existing road network close to the subject site.

Source: Google Maps

Figure 2.1: Road Network

Table 2.1 provides a summary of the key roads located near the subject site.

Table 2.1: Key Roads

Road Name	Jurisdiction	Hierarchy	Cross Section	Posted Speed
Crowson Lane	Council	Arterial	2 lanes undivided	80km/h
Future Mount Lindesay Highway Service Road	TMR	Trunk Connector	2 lanes undivided	60km/h
Chambers Flat Road	Council	Arterial	2 lanes undivided	80km/h
Mount Lindesay Highway	TMR ^[1]	Highway	2 lanes divided	90km/h
Greenhill Road	Council	Rural Collector	2 lanes undivided	60km/h

1. TMR = Department of Transport and Main Roads

Table 2.2 provides a summary of the key intersections located near the subject site.

Table 2.2: Key Intersections

ID	Name	Jurisdiction	Control
1	Crowson Lane / Greenhill Road	Council	Priority ^[1]
2	Mount Lindesay Highway / Crowson Lane / Chambers Flat Road / Service Road	TMR ^[2]	Roundabout
3	Service Road / New Internal Road	TMR ^[2]	Priority
4	Service Road / New Internal Road	TMR ^[2]	Priority

1. Intersection 1 to be upgraded to signal control as part of Crowson Lane upgrade or as required by the development

2. TMR = Department of Transport and Main Roads

2.2 Greater Flagstone Priority Development Area

The subject site is located within the Greater Flagstone Priority Development Area (GFPDA) and is part of the North Maclean Industry and Business Zone.

Figure 2.2 illustrates the location of the subject site within the surrounding GFPDA.

Source: Nearmaps

Figure 2.2: Greater Flagstone Priority Development Area

2.3 Road Network Planning

It is understood that Crowson Lane is proposed to be upgraded to a four (4) lane arterial road, which will provide a primary connection between Flagstone and the Mount Lindesay Highway. Land acquisition has already commenced to allow for the widening of Crowson Lane, however, timing of the upgrades is still yet to be confirmed. It is understood that the ultimate connection will accommodate in the order of 30,000 vehicles per day by 2041.

Figure 2.3 presents the proposed layout of Crowson Lane along the frontage of the subject site which has been supplied by Council/EDQ.

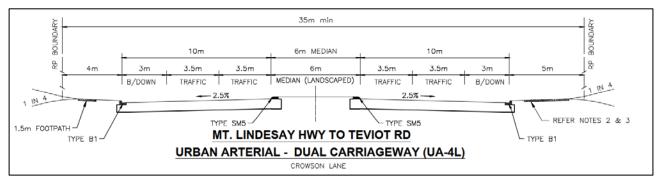


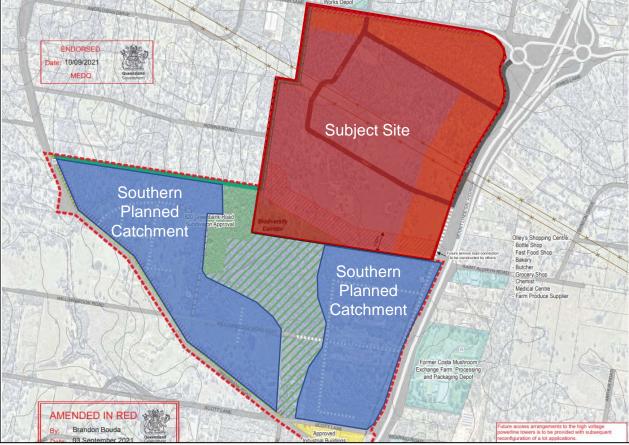
Figure 2.3: Crowson Road Layout

3. TRAFFIC GENERATION

3.1 Overview

Detailed traffic analysis was undertaken as part of the previous PDA development approval (DEV2018/961). This analysis considered amongst other things, the expected traffic generation of the precinct and informed the provision of the local road and intersection infrastructure.

As detailed herein, a comparison of the subject site's traffic generation estimated as part of the previous PDA development approval and that expected to be generated by the proposed development has been undertaken. The purpose being to confirm that the proposed development traffic impacts are in accordance with the previous approval.


3.2 Background Traffic Volumes

3.2.1 Overview

As the development and service road have not yet been constructed, we are unable to undertake turning movement surveys at the subject intersections to determine the expected background traffic volumes. Alternatively, we have undertaken a review of the catchment to the south (Southern Planned Catchment) of the subject site that may provide a future connection to the service road.

It should be noted that this catchment and 'background traffic' was not considered as part of the previous assessment undertaken and that it has been included as part of this assessment for completeness.

Figure 3.1 illustrates the endorsed master planning for the area including the subject site and industry and business zone to the south.

Source: Reel Planning

Figure 3.1: Surrounding Future Developments

North Maclean Industrial Estate: Traffic Impact Assessment

Project: P5708

Version: 001

Considering the proposed road alignments and most convenient connections to the surrounding higher order roads, it is expected that

- All of the development generated traffic will access the subject site from the north
- Only a very small portion of the Southern Planned Catchment traffic will use the service road to the north as it is serviced by convenient access to Mt Lindesay Highway via Greenbank Road

For this assessment, we have made the following assumptions:

- The Southern Planned Catchment will be constructed by 2030
- A 40% plot ratio will be applied to the total developable area of the Southern Planned Catchment to determine the expected yields
- Southern Planned Catchment traffic will be generated at a rate of 0.40 trips per 100m², which is consistent with the subject site and was approved over the subject site
- 10% of Southern Planned Catchment traffic will use the service road along the frontage of the subject site. 90% of Southern Planned Catchment traffic will exit the zone via Greenbank Road.
- For the volumes attributed to the Service Road, Southern Planned Catchment traffic will have a 50% inbound and 50% outbound distribution along the service road.

3.2.2 Southern Planned Catchment Traffic Generation

Table 3.1 identifies the peak hour generation rate adopted for the Southern Planned Catchment.

Table 3.1: Trip Generation Rate – Southern Planned Catchment

Land Use	AM Peak Hour Rate	PM Peak Hour Rate	Source	
Business, Industry & Warehouse	0.40 trips / 100m ² GFA	0.40 trips / 100m ² GFA	DEV2018/961	

Table 3.2 summarises the adopted directional splits for the Southern Planned Catchment traffic.

Table 3.2: Directional Splits – Southern Planned Catchment

Land Use	AM Inbound	AM Outbound	PM Inbound	PM Outbound	
Business, Industry & Warehouse	50%	50%	50%	50%	

Table 3.3 summarises the traffic generation estimated as part of the Southern Planned Catchment.

Table 3.3: Estimated Traffic Generation – Southern Planned Catchment

	Estimated Plot Ratio		Estimated	AM Peak (Trips)			PM Peak (Trips)		
Land Use	Lot Size	Plot Ratio	Yield	In	Out	Total	In	Out	Total
Business, Industry & Warehouse	~910,000m ²	40%	364,000m ²	728	728	1,456	728	728	1,456

Table 3.4 summarises the traffic generation estimated as part of the Southern Planned Catchment.

Table 3.4: Estimated Traffic Generation on Service Road – Southern Planned Catchment

Land Use	Directional Factor	AM Peak (Trips)			PM Peak (Trips)		
Lanu Use	Directional Factor		Out	Total			
Business, Industry & Warehouse	10% North	73	73	146	73	73	146

In summary, the Southern Planned Catchment is expected to generate in the order of 1,456 peak hour trips, with 146 of these trips (i.e. 10%) utilising the Service Road along the subject site's frontage. These trips have been considered as part of our intersection assessment below. As previously noted, the Southern Planned Catchment was not considered as part of the previous assessment but has been included for completeness.

3.3 Development Traffic Generation

Table 3.5 identifies the peak hour traffic generation rate for the approved industrial development which was utilised as part of the PDA development approval and for the proposed development.

 Table 3.5:
 Trip Generation Rate

Scenario	Land Use	AM Peak Hour Rate	PM Peak Hour Rate	Source	
Approved	Industry & Warehouse	0.40 trips / 100m ² GFA	0.40 trips / 100m ² GFA	DEV2018/961	
Proposed	Industry & Warehouse	0.40 trips / 100m ² GFA	0.40 trips / 100m ² GFA	DEV2018/961	

Table 3.6 summarises the adopted directional splits for approved and proposed which are based on typical industry rates and were utilised as part of the approved DA and for the proposed development.

Table 3.6: Directional Splits

Scenario	Land Use	AM Inbound	AM Outbound	PM Inbound	PM Outbound	
Approved	Industry & Warehouse	70%	30%	40%	60%	
Proposed	Industry & Warehouse	70%	30%	40%	60%	

Table 3.7 summarises the traffic generation estimated as part of the approved DA and proposed development. It is noted that the Masterplan does not nominate the proposed yields for each use.

Scenario	Stage	Land Use	Estimated	AM Peak (Trips)			PM Peak (Trips)		
Scenario	Slage		Yield	In	Out	Total	In	Out 5 1,207 8 446 4 501 0 300 2 1,248	Total
Approved	Ultimate	Industry & Warehouse	503,000m ²	1,409	603	2,012	805	1,207	2,012
	1		186,017m ²	521	223	744	298	446	744
Dranagad	2		208,817m ²	585	251	835	334	501	835
Proposed	3	Industry & Warehouse	125,167m ²	350	150	501	200	300	501
	Ultimate		520,000m ²	1,456	624	2,080	832	1,248	2,080
		Difference	+17,000m ²	+47	+21	+68	+27	+41	+68

 Table 3.7:
 Estimated Subject Site Traffic Generation – ROL DA

As noted above, the proposed land use, trip generation rate, and directional splits are consistent with the approved DA.

A minor trip generation increase compared to the previous approval is expected as a result of a minor increase in yields.

In summary, the proposed development is expected to generate an additional 68 peak hour trips (+3%) compared to the previous approval. This results in a total peak hour generation of 2,080 trips.

3.4 Network Distribution

Table 3.8 summarises the road network distributions for the approved and proposed development.

Scenario	Land Use	North	South	East	West
Approved	Industry & Warehouse	65%	10%	10%	15%
Proposed	Proposed Industry & Warehouse	65%	10%	10%	15%

In summary, the proposed development is expected to be distributed across the external road network in accordance with the previous approval.

3.5 Design Traffic Volumes

For the purposes of the traffic assessment, we have assumed the following:

- Stage 1 Year of Opening: 2024
- Stage 1 10-year Post Opening Design Horizon: 2034
- Stage 2 Year of Opening: 2026
- Stage 2 10-year Post Opening Design Horizon: 2036
- Stage 3 Year of Opening: 2029
- Stage 3 10-year Post Opening Design Horizon: 2039

Design traffic volumes have been derived for each stages year of opening and 10-year design horizon allowing for a 4% per annum growth rate on Crowson Lane traffic volumes in accordance with the previous approval.

Additionally, 2041 traffic volumes have been derived for an ultimate Crowson Lane scenario to allow for 3,000 peak hour vehicles along Crowson Lane in accordance with the previous approval.

Design traffic volumes are included at **Appendix B**.

4. TRAFFIC IMPACTS

Table 4.1 summarises the subject site's traffic generation estimated as part of the approved DA and proposed development.

Land Use	Estimated	AM Peak (Trips)			PM Peak (Trips)		
Land Use	Yield	In	Out	Total	In	Out	Total
		Approve	d Use				
Approved Industry & Warehouse	503,000m ²	1,409	603	2,012	805	1,207	2,012
Approved Use Sub	Total	1,409	603	2,012	805	1,207	2,012
Proposed Industry & Warehouse	520,000m ²	1,435	615	2,050	820	1,230	2,050
Proposed Use Sub	Proposed Use Sub Total		624	2,080	832	1,248	2,080
Net Difference	Net Difference		+21	+68	+27	+41	+68

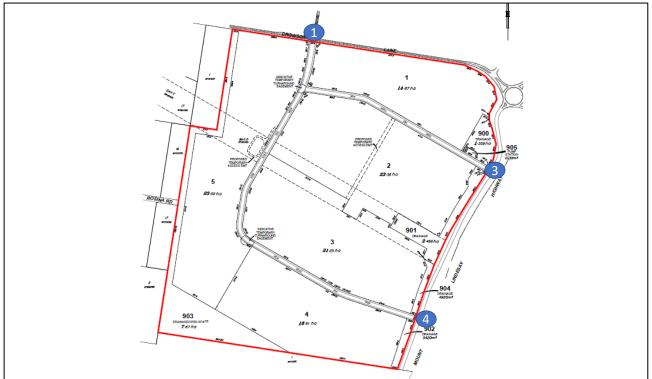
Table 4.1: Estimated Subject Site Traffic Generation – ROL DA

Based on the above, the proposed development will result in a net increase of approximately 68 trips during the peak hour periods compared to PDA development approval. This increase in trips is equal to one (1) trip every 53 seconds on average and represents an ~3% increase from the approved traffic volumes. This increase in trips is considered low and not expected to result in significant impacts compared to the existing approval on the surrounding road network.

The assessment undertaken as part of the previous DA determined that:

- The road network would operate within typically adopted performance thresholds up to a 2041 ultimate design horizon (30,000vpd along Crowson Lane)
- The Crowson lane Interchange is expected to operate within typically adopted performance thresholds up to a 2030 design horizon, which is after the development's year of opening for its final stage (2029). This aligns with the requirements of TMR's Guide to Traffic Impact Assessment's which only requires the year of opening to be assessed.

Noting the above, we are of the view that:


- The development is not expected to significantly increase impacts on the surrounding road network compared to the previous Masterplan DA
- Further detailed traffic analysis (SIDRA) is not warranted at any external intersections
- Road upgrades are not expected to be warranted to offset development traffic impacts on the external road network (consistent with the Masterplan DA findings).

5. ACCESS REVIEW

5.1 Overview

The proposed access locations are indicatively illustrated on Figure 5.1.

Source: Wolter Consulting Group

Figure 5.1: Access Locations

Three (3) access locations are proposed to support the development including:

- Access Intersection 1: A new southern leg to the existing Greenhill Road / Crowson Lane intersection and upgrading the intersection to a signalised configuration
- Access Intersection 3: A new priority-controlled T-intersection with left out only
- Access Intersection 4: A new priority-controlled T-intersection.

All access locations and configurations are generally in accordance with the previous approval. Nevertheless, a detailed assessment of each access configuration has been undertaken herein to confirm treatments and land dedication requirements.

Refer to civil engineering documentation for concept drawings of intersection layouts.

It is understood, that as part of the proposed staging, that Access intersections will come online once the corresponding stage is constructed. The proposed access staging arrangements are listed below:

- Stage 1 (186,017m² GFA): Via Access Intersection 3 in 2024
- Stage 2 (394,834m² GFA): Via Access Intersections 3 & 4 in 2026
- Stage 3 (520,000m² GFA): Via Access Intersections 1, 3 & 4 in 2029.

5.2 Access Intersection 1

5.2.1 Overview

Access Intersection 1 (Access 1) is proposed to be configured as a fourth leg to the existing Greenhill Road / Crowson Lane intersection and upgraded to a signalised configuration as part of the Crowson Lane upgrade project or Stage 3 development works (whichever occurs first). The interim upgrades proposed are expected to accommodate the Stage 3 year of opening (2029) traffic volumes and 10-year design horizon (2039) traffic volumes.

These upgrades include the following:

- A 60m auxiliary left turn lane (Crowson Lane westbound)
- A 60m channelised right turn lane (Crowson Lane westbound)
- An 80m channelised right turn lane (Crowson Lane eastbound)
- A 70m channelised right turn lane (Site Access northbound).

It is expected that works on Crowson Lane can form part of the ultimate configuration and as such should be creditable to the development (if constructed by the developer).

As part of the <u>ultimate 2041</u> configuration, once Crowson Lane has been upgraded to four (4) lanes as per Council's indicative plans and carries 30,000vpd, the following additional treatments will be required:

- Extension of the 70m channelised right turn lane to 80m (Site Access northbound)
- Provision of a 40m left slip turn lane (Site Access northbound).

A detailed SIDRA intersection assessment has been undertaken for the proposed access intersection to confirm that the configuration is suitable for all design scenarios. Traffic generation volumes have been utilised in accordance with Section 3 of this report.

5.2.2 Access 1 SIDRA Assessment

Figure 5.2 illustrates the modelled geometry of the Access 1.

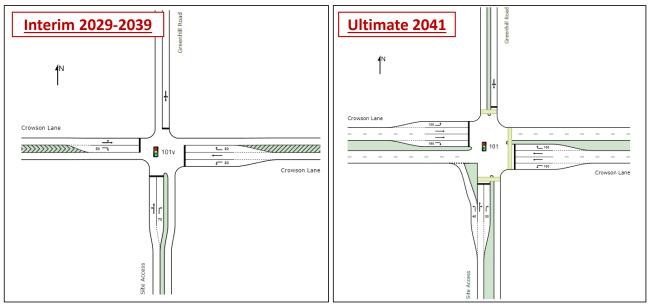


Figure 5.2: SIDRA Geometry: Access 1

Table 5.1 summarises the SIDRA results for Access 1. Detailed SIDRA outputs have been included at **Appendix C**.

Year	Peak	Scenario	Volume (vph)	Degree of Saturation	Average Delay (s)	Level of Service	95 th Percentile Queue (m)	Cycle Time (s)
2029 (Stage 3)	AM		861	0.78	34	С	75	70
	PM		885	0.72	34	С	64	70
2039 (Stage 3	AM	With Development	892	0.78	34	С	75	70
+ 10 years)	PM		921	0.72	33	С	64	70
2041 (Stage 3 Horizon)	AM		3,907	0.82	35	С	327	140
	PM		3,907	0.88	38	D	427	150

Table 5.1: SIDRA Results: Access 1

In summary, the study intersection operates within typically adopted performance thresholds (DOS <0.9, LOS C/D) during all relevant design horizons and as such is considered suitable to support the development. Furthermore, in all scenarios, 95th percentile queuing does not exceed the provided channelised lanes, ensuring reduced likelihood of any overflow impacting through lanes.

5.3 Access Intersection 3

5.3.1 Overview

Access Intersection 3 (Access 3) is proposed to be configured as a new priority-controlled intersection connecting the site access to the Service Road. Due to the relatively high volumes of vehicles opposing the right turn exit from the site resulting in extensive delays, this movement has been restricted.

Traffic generation volumes have been utilised in accordance with Section 3 of this report.

5.3.2 Access 3 Location

Table 5.2 summarises our review of the proposed intersection location against EDQ's requirements.

Table 5.2: Location Review: Access 3

Road Frontage	Required Intersection Separation	Provided Intersection Separation	Compliant
Trunk Connector	300m	>300m	Yes

In summary, the proposed intersection location complies with EDQ's requirements.

5.3.3 Access 3 Sight Distances

Table 5.3 summarises our review of the intersection sight distances against Austroads requirements.

Table 5.3: Sight Distance Review: Access 3

Speed Environment	Direction	AS2890 Requirement	Available Sight Distance	Compliant
60km/h	North	151m	>160m	Yes
	South	151111	>160m	Yes

As outlined above, available intersection sight distances comply with Austroads requirements. Sight lines to the north will be across a bio-retention basin which will not have any visibility obstructions.

5.3.4 Access 3 Turn Warrants Assessment

Table 5.4 summarises turn warrants results for Access 3. It should be noted that no left turn assessment has been undertaken as all traffic will be approaching the site from the north.

It is important to note that the proposed cross section provided for the Service Road consists of a break down lane on either side of the carriageway, which could be utilised in future to provide a basic left turn treatment with minimal impacts on the verge if required.

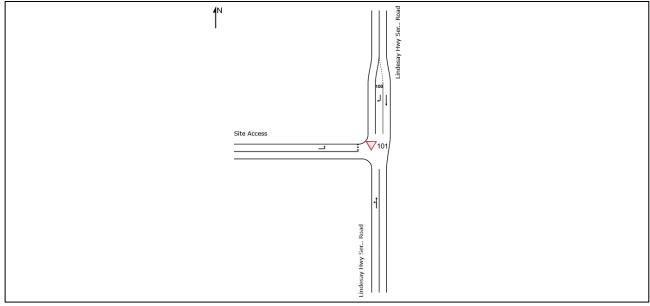

Year	Peak Hour	Direction	Q _M	Q _R	Required	Provided
2034 (Stage 1+10-years)	AM	Diabt	146	521	CHR	CHR
	PM	Right	146	298	CHR	CHR
2036	AM	Diaht	981	521	CHR	CHR
(Stage 2+10-years)	PM	Right	480	298	CHR	CHR
2039 (Stage 3+10-years)	AM	Diabt	870	507	CHR	CHR
	PM	Right	436	290	CHR	CHR

Table 5.4: Turn Warrants Results: Access 3

Based on the above, the access intersection will require a channelised right (CHR) turn treatment designed in accordance with Austroads: Guide to Road Design.

5.3.5 Access 3 SIDRA Assessment

Figure 5.2 illustrates the modelled geometry of the Access 3.

Source: SIDRA 9

Figure 5.3: SIDRA Geometry: Access 3

Table 5.1 summarises the SIDRA results for Access 3. Detailed SIDRA outputs have been included at **Appendix C**.

Year	Peak	Scenario	Volume (vph)	Degree of Saturation	Critical Delay (s)	Level of Service	95 th Percentile Queue (m)
2024 (Stage 4)	AM		786	0.36	6	А	21
2024 (Stage 1)	PM		786	0.34	6	А	17
2020 (Cto ao 2)	AM		1,664	0.51	9	А	40
2026 (Stage 2)	PM		1,663	0.75	18	В	62
2020 (Ctore 2)	AM		1,525	0.47	8	А	33
2029 (Stage 3)	PM	With	1,527	0.64	14	А	46
2034	AM	Development	938	0.39	6	А	23
(Stage 1+10-years)	PM		938	0.37	6	А	18
2036	AM		1,816	0.57	11	А	48
(Stage 2+10-years)	PM		1,817	0.89	29	С	99
2039	AM		1,679	0.53	10	А	42
(Stage 3+10-years)	PM		1,681	0.74	18	В	59

Table 5.5: SIDRA Results: Access 3

In summary, the study intersection generally operates within typically adopted performance thresholds (DOS <0.8) during all relevant design horizons and as such is considered suitable to support the development.

The only exclusion to this is the 2036 (Stage 2+10-years) scenario, which operates at a DoS of 0.89. This is considered acceptable as this is an interim scenario that would only occur if Stage 3 were not developed prior to 2036, which is considered unlikely noting that it is intended to be developed in 2029. Importantly, during this scenario the critical delay is only 29 seconds, which is well below TMR's acceptable delay threshold of 42 seconds.

Furthermore, in all scenarios, 95th percentile queuing does not exceed the provided channelised lane, ensuring reduced likelihood of any overflow traffic impacting the through lanes.

5.4 Access Intersection 4

5.4.1 Overview

Access Intersection 4 (Access 4) is proposed to be configured as a new priority-controlled intersection connecting the site access to the Service Road. To determine the configuration of the access intersection SIDRA and turn warrants assessments have been undertaken.

5.4.2 Access 4 Location

Table 5.6 summarises our review of the proposed intersection location against EDQ's requirements.

Table 5.6: Location Review: Access 4

Road Frontage Required Intersection Separation		Provided Intersection Separation	Compliant
Trunk Connector	300m	>300m	Yes

In summary, the proposed intersection location complies with EDQ's requirements.

5.4.3 Access 4 Sight Distances

Table 5.7 summarises our review of the intersection sight distances against Austroads requirements.

Table 5.7: Sight Distance Review: Access 4

Speed Environment	Direction AS2890 Requirement		Available Sight Distance	Compliant
60km/h	North	151-	>160m	Yes
	South	151m	NA	Yes

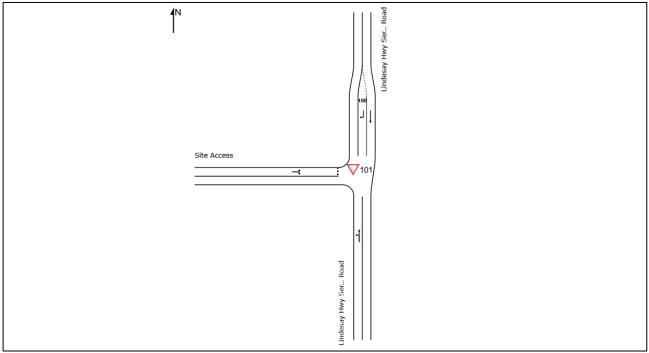
In summary, the available sight distances to the north comply with Austroads requirements and the sight distances to the south are expected to comply. However, the service road is not proposed to be constructed past the intersection and as such, the sight distance has not been assessed.

5.4.4 Access 4 Turn Warrants Assessment

Table 5.8 summarises turn warrants results for Access 4. It should be noted that no left turn assessment has been undertaken as all traffic will be approaching the site from the north.

It is important to note that the proposed cross section provided for the Service Road consists of a break down lane on either side of the carriageway, which could be utilised in future to provide a basic left turn treatment with minimal impacts on the proposed verge if required.

Year	Peak Hour	Direction	QM	Q _R	Required	Provided
2036	AM		146	585	CHR	CHR
(Stage 2+10-years)	PM		146	334	CHR(s)	CHR
2039 (Stage 3+10-years)	AM	Right	146	507	CHR	CHR
	PM		146	290	CHR(s)	CHR


Table 5.8: Turn Warrants Results: Access 4

Based on the above, the access intersection will require a channelised right (CHR) turn treatment designed in accordance with Austroads: Guide to Road Design.

5.4.5 Access 4 SIDRA Assessment

Figure 5.2 illustrates the modelled geometry of the Access 4.

Source: SIDRA 9

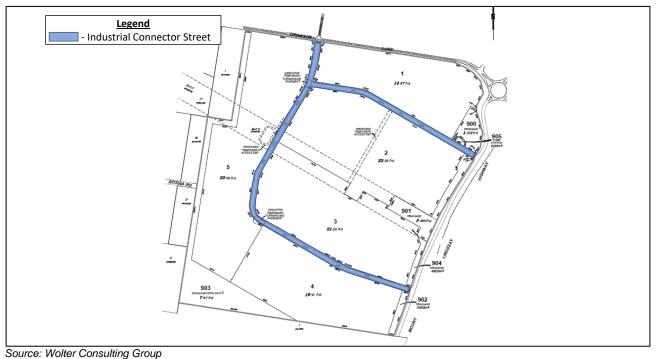
Figure 5.4: SIDRA Geometry: Access 4

Table 5.1 summarises the SIDRA results for Access 4. Detailed SIDRA outputs have been included at **Appendix C**.

Year	Peak	Scenario	Volume (vph)	Degree of Saturation	Critical Delay (s)	Level of Service	95 th Percentile Queue (m)
2026 (Stage 2)	AM		884	0.40	6	А	25
2026 (Stage 2)	PM		883	0.38	7	А	21
	AM		766	0.35	7	А	20
2029 (Stage 3)	PM	With Development	767	0.33	7	А	16
2036	AM		1,036	0.44	28	В	27
(Stage 2+10-years)	PM		1,035	0.41	18	В	22
2039	AM		918	0.38	22	В	22
(Stage 3+10-years)	PM		919	0.36	15	В	18

Table 5.9: SIDRA Results: Access 4

In summary, the study intersection operates within typically adopted performance thresholds (DOS <0.8) during all relevant design horizons and as such is considered suitable to support the development. Furthermore, in all scenarios, 95th percentile queuing does not exceed the provided channelised lane, ensuring reduced likelihood of any overflow impacting through lanes.


6. SITE LAYOUT REVIEW

6.1 Road Hierarchy

The proposed subdivision includes the following road types:

Industrial Connector (IC, 23m)

Figure 6.1 below illustrates the proposed road hierarchy for the subdivision.

Figure 6.1: Road Hierarchya

Based on the proposed yields the provision of the IC road hierarchy is expected to be suitable to accommodate the proposed traffic demands.

6.2 Road Cross Sections

Table 6.1 provides a summary of the relevant internal road cross sections.

Table 6.1: Road Cross Sections

Hierarchy	Road Reserve	Pavement Width	Verge Width	Footpaths	
Industrial Connector	23m	13m	1 x 4.5 & 1 x 5.5m	1 x 1.8m path & 1 x 2.5m shared path	

It is understood that the applicant has proposed these road cross sections following pre-lodgement discussions with EDQ, where they were generally supported. The pavement widths are generally in accordance with the previous approval (DEV2018/961) and EDQ's requirements. Therefore, the proposed road cross sections are expected to be suitable to accommodate B-double movements, in accordance with the previous PDA approval.

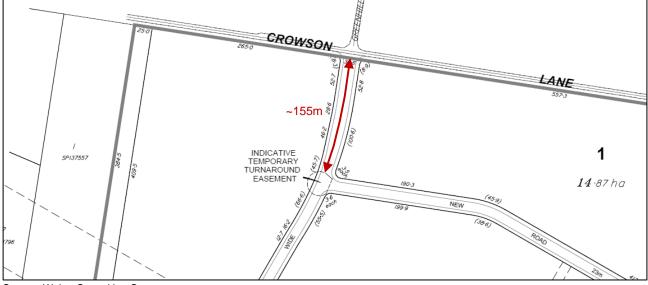
6.3 Internal Road Volumes

Table 6.2 provides a summary of our review of the internal road traffic volumes against the EDQ's requirements

Table 6.2: Road Cross Sections

Hierarchy	Permittable Traffic Volumes	Proposed Traffic Volumes	
Industrial Connector	<7,500vpd	Maximum 7,280vpd	

In summary, the proposed development is expected to generate a total of 20,800vpd, which are divided across three (3) access intersections as follows:


- Access Intersection 1: 30% (or 6,240vpd)
- Access Intersection 3: 35% (or 7,280vpd)
- Access Intersection 4: 35% (or 7,280vpd).

These traffic volumes would only be present at the very entrance to the site, as each development is expected to remove traffic from the internal road network when entering / servicing a particular lot. Resulting in traffic volumes progressively decreasing the further the road network expands into the site.

In summary, the proposed road hierarchy are generally in accordance with the previously approved development and EDQ's requirements.

6.4 Intersection Spacing

Figure 6.2 below illustrates the proposed intersection spacing.

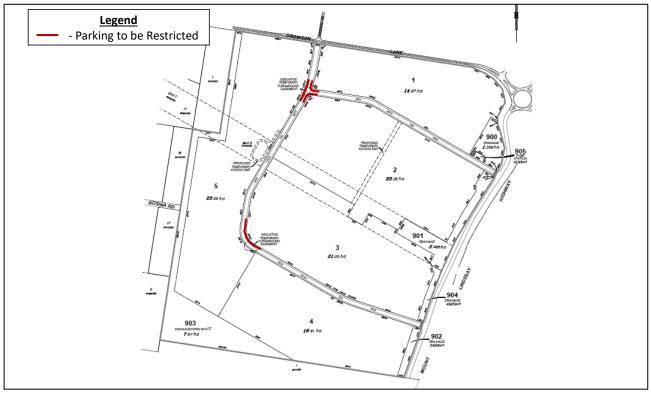
Source: Wolter Consulting Group

Figure 6.2: Internal Intersection Spacing

Table 6.3 provides a summary of the internal intersection spacing.

Table 6.3: Road Cross Sections

Hierarchy	Requirement	Minimum Provision	Compliant
Industrial Connector	150m	~155m	Yes


In summary, the proposed internal intersection spacing complies with EDQ's requirements.

6.5 Internal Servicing

All industrial collector roads have been designed to accommodate a B-double as the maximum design vehicle.

To allow for the proposed design vehicles, kerbside parking will need to be restricted at most intersections / bends in accordance with Figure 6.3.

Source: Wolter Consulting Group
Figure 6.3: Parking Restrictions

Swept path diagrams have been prepared which confirm that the proposed cross sections are sufficient to accommodate independent movements for a design vehicle up to a 26m B-double.

A copy of the service vehicle swept path diagrams are included at Appendix D.

7. SUMMARY

In summary:

- CH Hydrangea Pty Ltd is seeking to undertake a Reconfiguration of Lot (ROL) application to subdivide four (4) industrial lots into five (5) industrial lots
- The development yields, access, traffic generation and traffic distribution are generally consistent with the previous approval over the site and as such, no external traffic impact analysis has been undertaken
- SIDRA intersection analysis has been undertaken at each of the proposed access intersections and has confirmed that each of the proposed access intersections are sufficiently designed to accommodate the ultimate and all interim stage design scenarios
- All internal road corridors, road hierarchies, intersections, and servicing provisions are generally consistent with EDQ's requirements or designed in accordance with the previous development approval
- Swept path diagrams confirm that the design service vehicle can adequately service the development

Based on the findings of this report, we are of the opinion that the proposed amendment application will not result in significantly different traffic impacts compared to the previous PDA approval. Therefore, there are no traffic engineering related matters to preclude approval of this development application.

Appendix A: Development Plans

Notes

 Any licence, express or implied, to use this document for any purpose whatsoever is restricted to the terms of the agreement or implied agreement between Wolter Consulting Group and the instructing party. 		Legend Site Boundary
2. Design subject to local authority approval &		Stage Boundary
detailed engineering requirements, areas and dimensions are approximate only and are subject to survey. Therefore this drawing is not to be used for engineering design.		Table of Development
 Cadastral data supplied by others and is approximate only. 		Gross area of subject land117.9 ha Area of proposed park, drainage and open space12.6 ha (Including pump station) Area of new road
4. Indicative road horizontal design, subject to biopods and engineering review.		Length of new road
5. This note is an integral part of this plan. This plan may not be reproduced without this notation being included.		Number of proposed lots
	Plan of Reconfiguration	DRAWING NO. VERSION

Scale 1:2500
A1 – Lengths are in metres. 20 0 20 40 60 80 100 120 140 160 180 200 220

4499-4651 Mount Lindesay Highway

Description Local Authority

Lot 39 on SP258739

Logan City

CLIENT Charter Hall Group

DRAWING NO.	VERSION
22-0007P/01-02	2 E
DATE DRAWN	SHEET NO.
14-08-2023	1 of 1

KB

Notes

1. Any licence, express or implied, to use this document for any purpose whatsoever is restricted to the terms of the agreement or implied agreement between Wolter Consulting Group and the instructing party.

2. Design subject to local authority approval & detailed engineering requirements, areas and dimensions are approximate only and are subject to survey. Therefore this drawing is not to be used for engineering design.

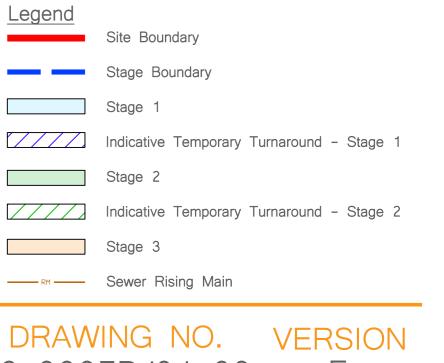
3. Cadastral data supplied by others and is approximate only.

4. Earthworks for Sewer Rising Main and full service road will be completed with Stage 1.

5. Indicative road horizontal design, subject to biopods and engineering review.

6. This note is an integral part of this plan. This plan may not be reproduced without this notation being included.

Staging	Sketch F	lan
1100-1651	Mount Lindosa	v Hiak


4499-4651 Mount Lindesay Highway

Logan City

Lot 39 on SP258739 Description Local Authority

CLIENT Charter Hall Group

DRAWING NO. **VERSION** 22-0007P/01-03 Ε DATE DRAWN SHEET NO. 1 of 1 14-08-2023

Appendix B: Design Traffic Volumes

FUTURE DEVELOPMENT TRAFFIC GENERATION

Table 1. Adopted Trip Generation Rates

Lan	d Use	AM Peak	PM Peak	Unit	Source
Future De	velopment	0.4	0.4	Trips/ 100sqm GFA	DEV2018/961

Table 2. Adopted Directional Distribution

	Land Use	AM Peak		PM Peak	
Land Ose	Inbound	Outbound	Inbound	Outbound	
	Future Development	50%	50%	50%	50%

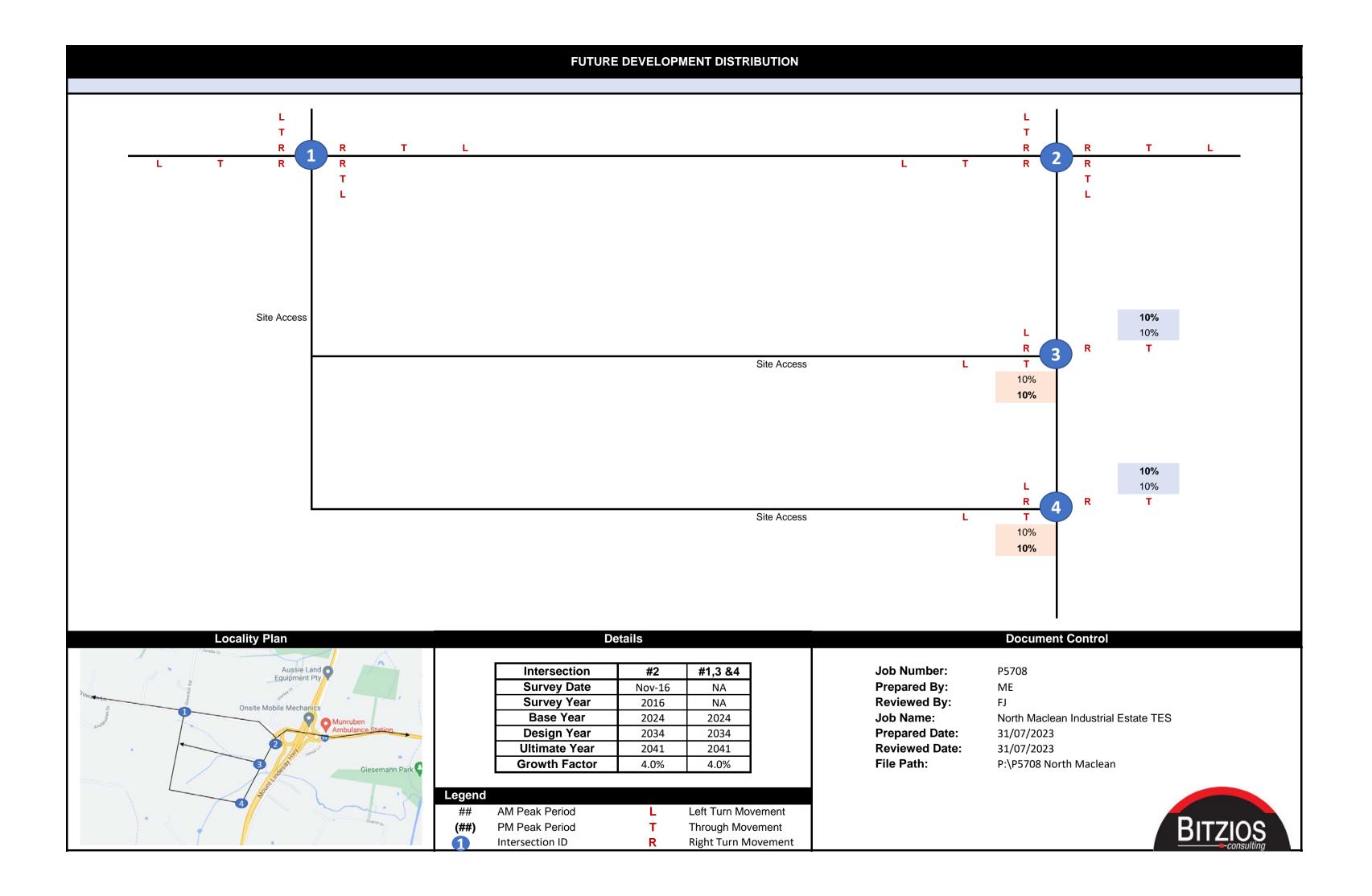
Table 3. Yields

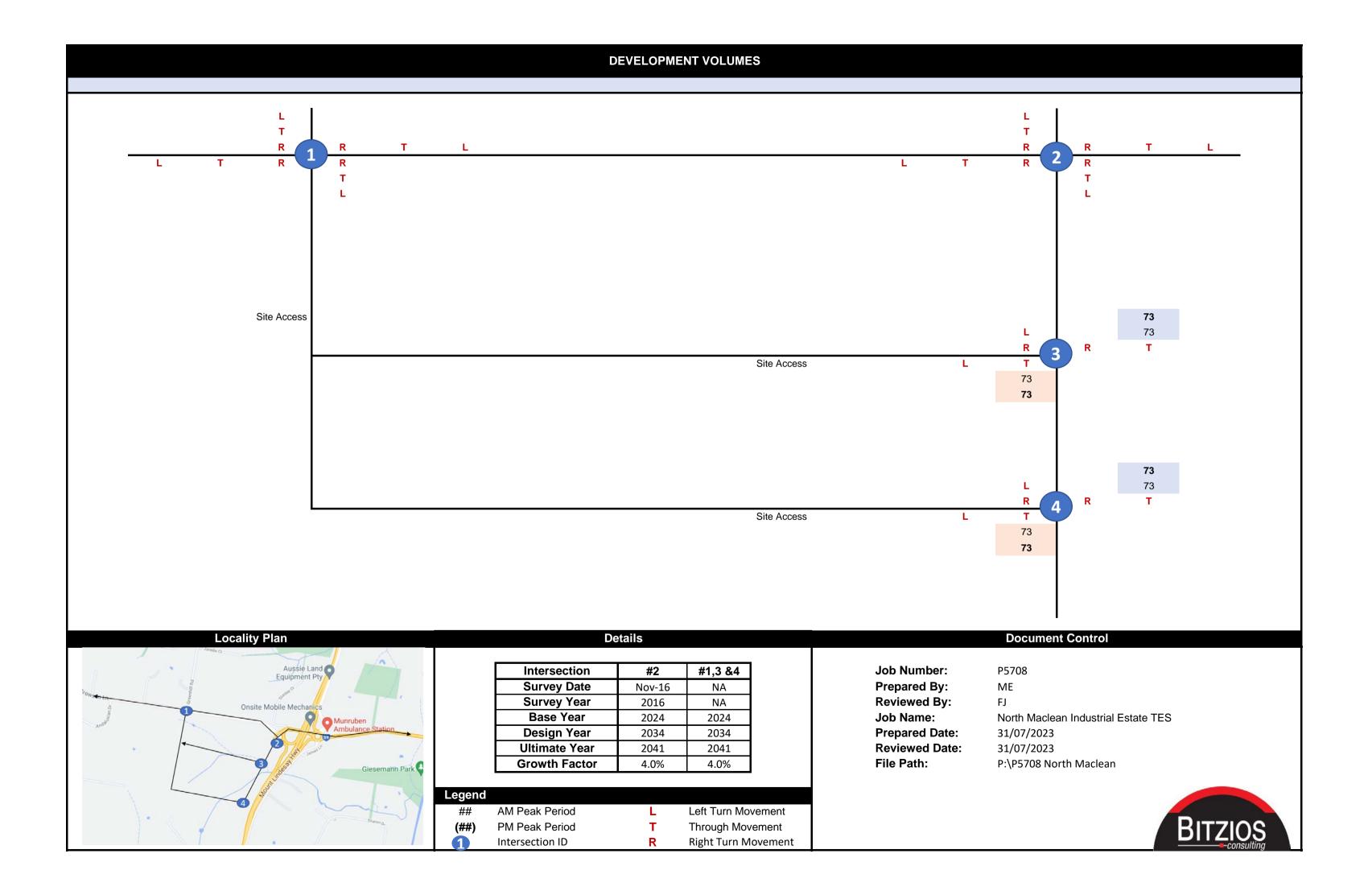
Land Use	Yield (sqm)		
Future Development	910,000		

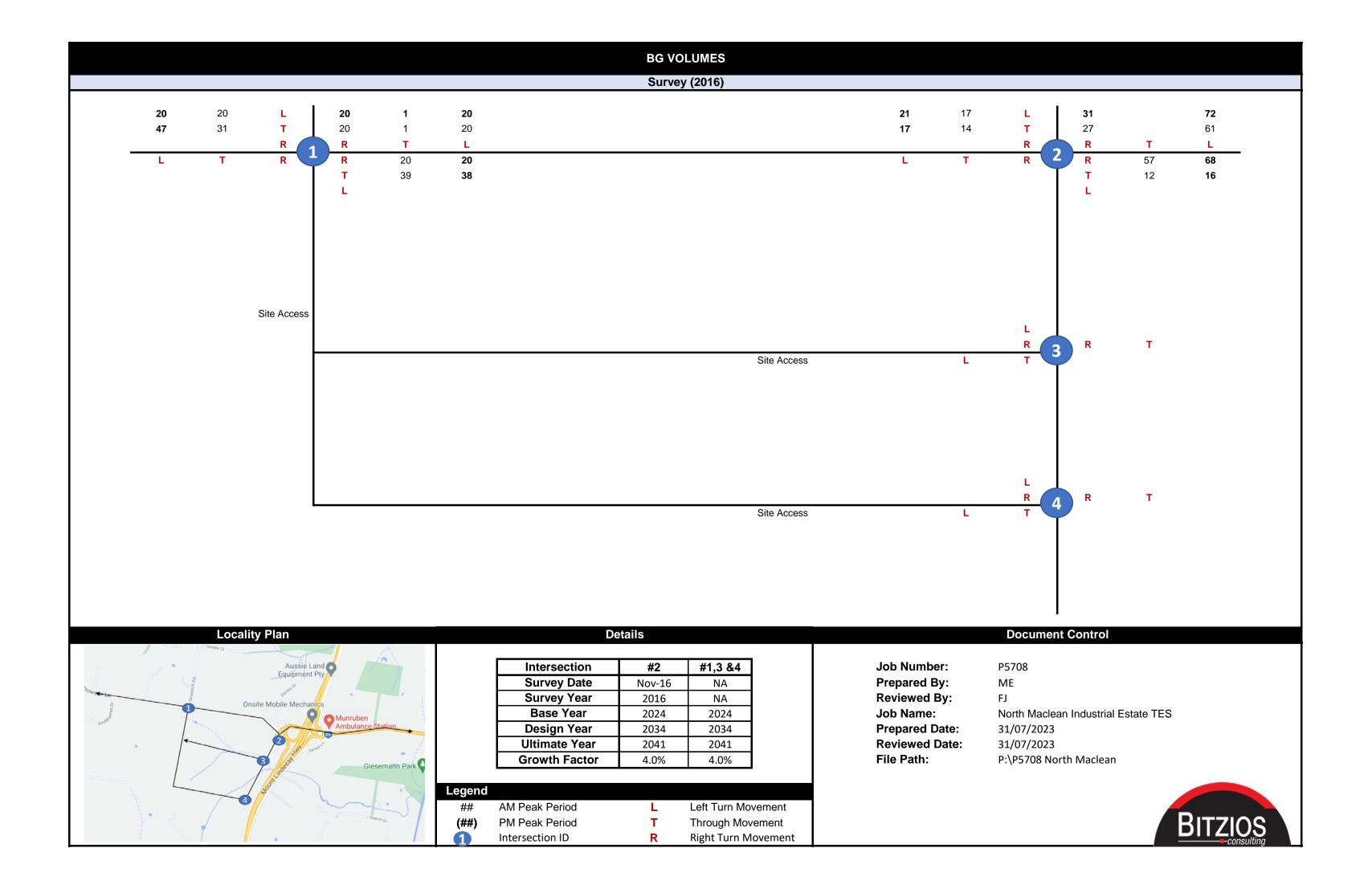
Table 4. Total Expansion Traffic Volumes

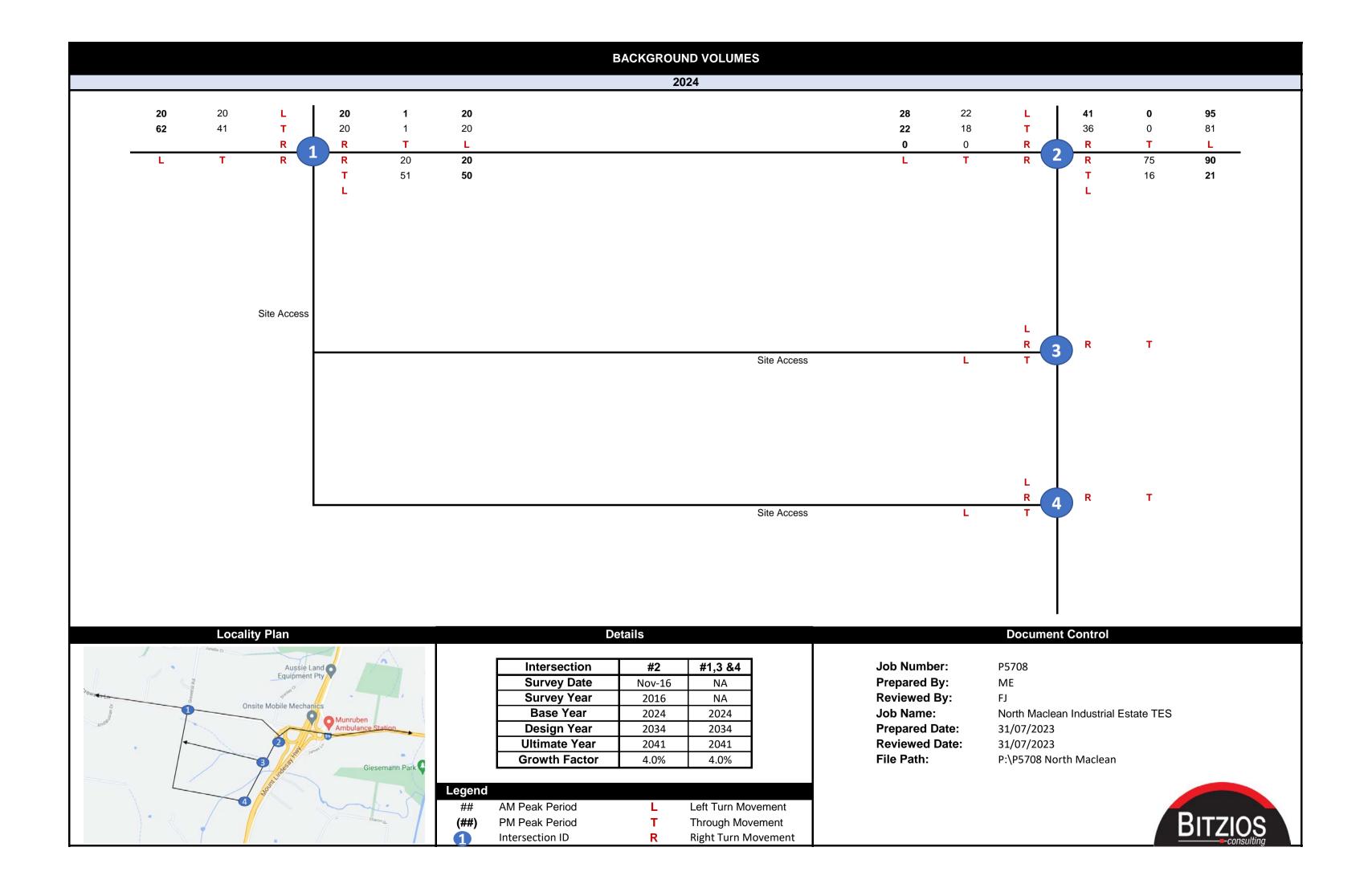
Land Use	Plot Ratio	AM			PM		
Lanu Ose		Inbound	Outbound	Total	Inbound	Outbound	Total
Future Development	400/	728	728	1,456	728	728	1,456
Total	40%	728	728	1,456	728	728	1,456

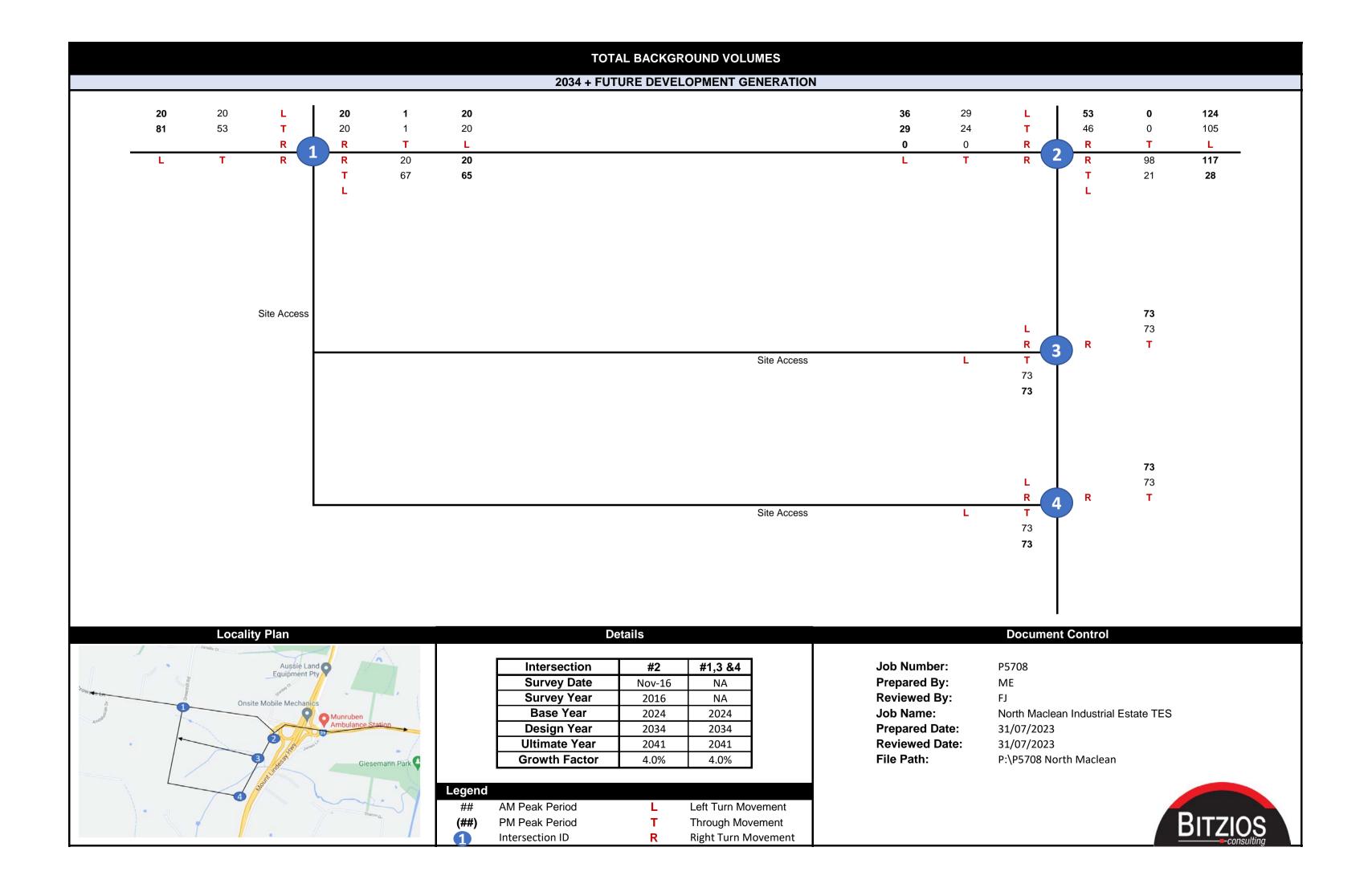
Table 5. External Traffic Distribution


Direction	%
To / from north on Service Road	10%
To / from east, west, or south	90%


Locality Plan		D	etails		
Januare Cr Aussie Land		Intersection	#2	#1,3,4&5	Job Number:
Equipment Pty		Survey Date	Nov-16	NA	Prepared By:
³ owstnin gate Onsite Mobile Mechanics		Survey Year	2016	NA	Reviewed By:
		Base Year	2024	2024	Job Name:
Ander Ambulance Station		Design Year	2034	2034	Prepared Date:
		Ultimate Year	2041	2041	Reviewed Date:
3 Giesemann Park		Growth Factor	4.0%	4.0%	File Path:
Giesemann Park					
	Legend				
	##	AM Peak Period	L	Left Turn Movement	7
Sharon G.	(##)	PM Peak Period	т	Through Movement	
	1	Intersection ID	R	Right Turn Movement	


Document Control


P5708 ME FJ North Maclean Industrial Estate TES 31/07/2023 31/07/2023 P:\P5708 North Maclean I



DEVELOPMENT TRAFFIC GENERATION

Table 1. Adopted Trip Generation Rates

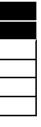
Land Use	AM Peak	PM Peak	Unit	Source
Industrial	0.4	0.4	Trips/ 100sqm GFA	DEV2018/961

Table 2. Adopted Directional Distribution

Land Use	AM Peak		PM Peak	
Lanu Ose	Inbound	Outbound	Inbound	Outbound
Industrial	70%	30%	40%	60%

Table 3. Yields

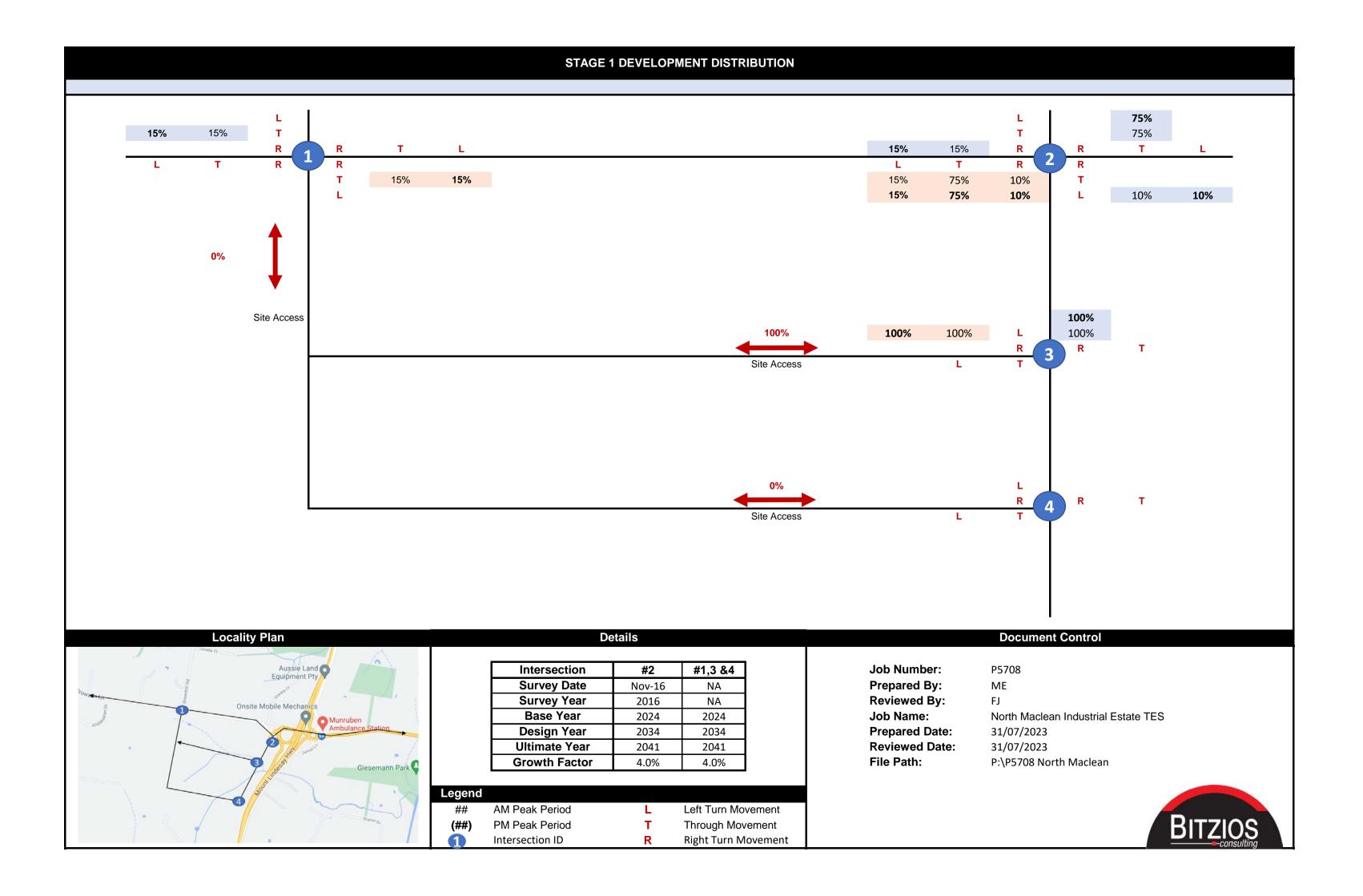
Stage	Yield (sqm)
1	186,017
2	208,817
3	125,167
Total	520,000

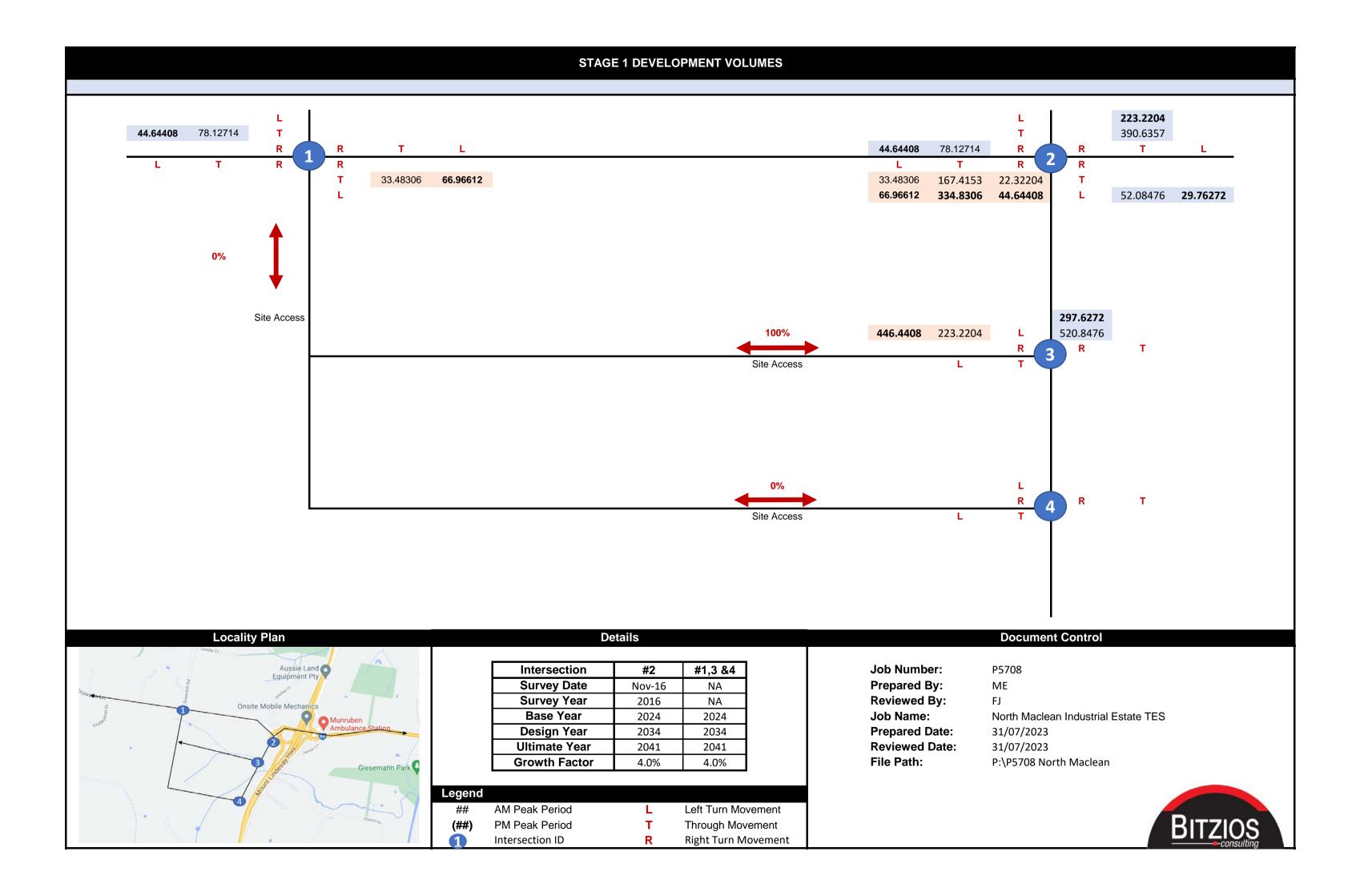

Table 4. Total Expansion Traffic Volumes

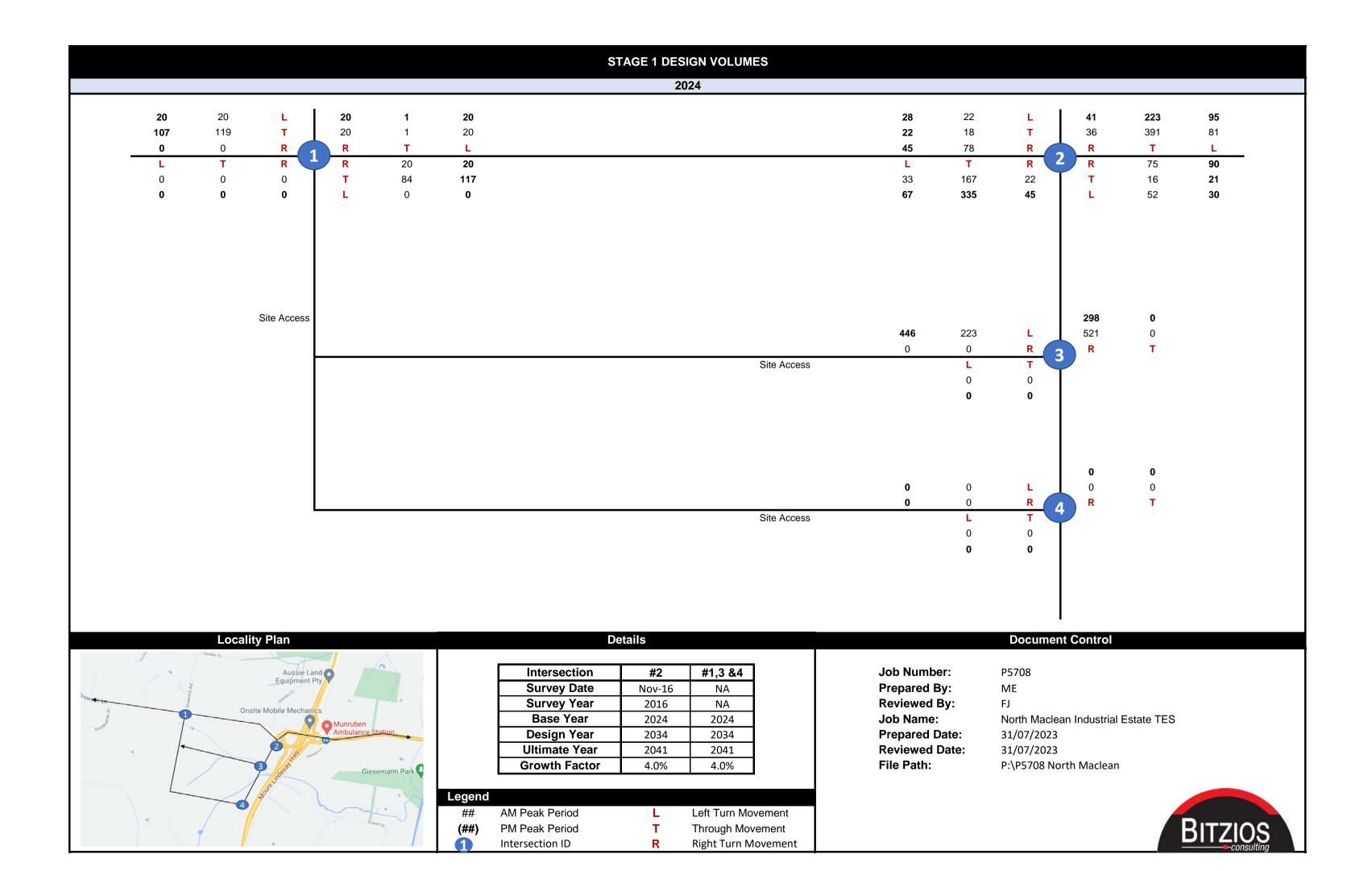
Land Use	AM			PM		
Land Use	Inbound	Outbound	Total	Inbound	Outbound	Total
1	521	223	744	298	446	744
2	585	251	835	334	501	835
3	350	150	501	200 300		501
Total	1,456	624	2,080	832	1,248	2,080

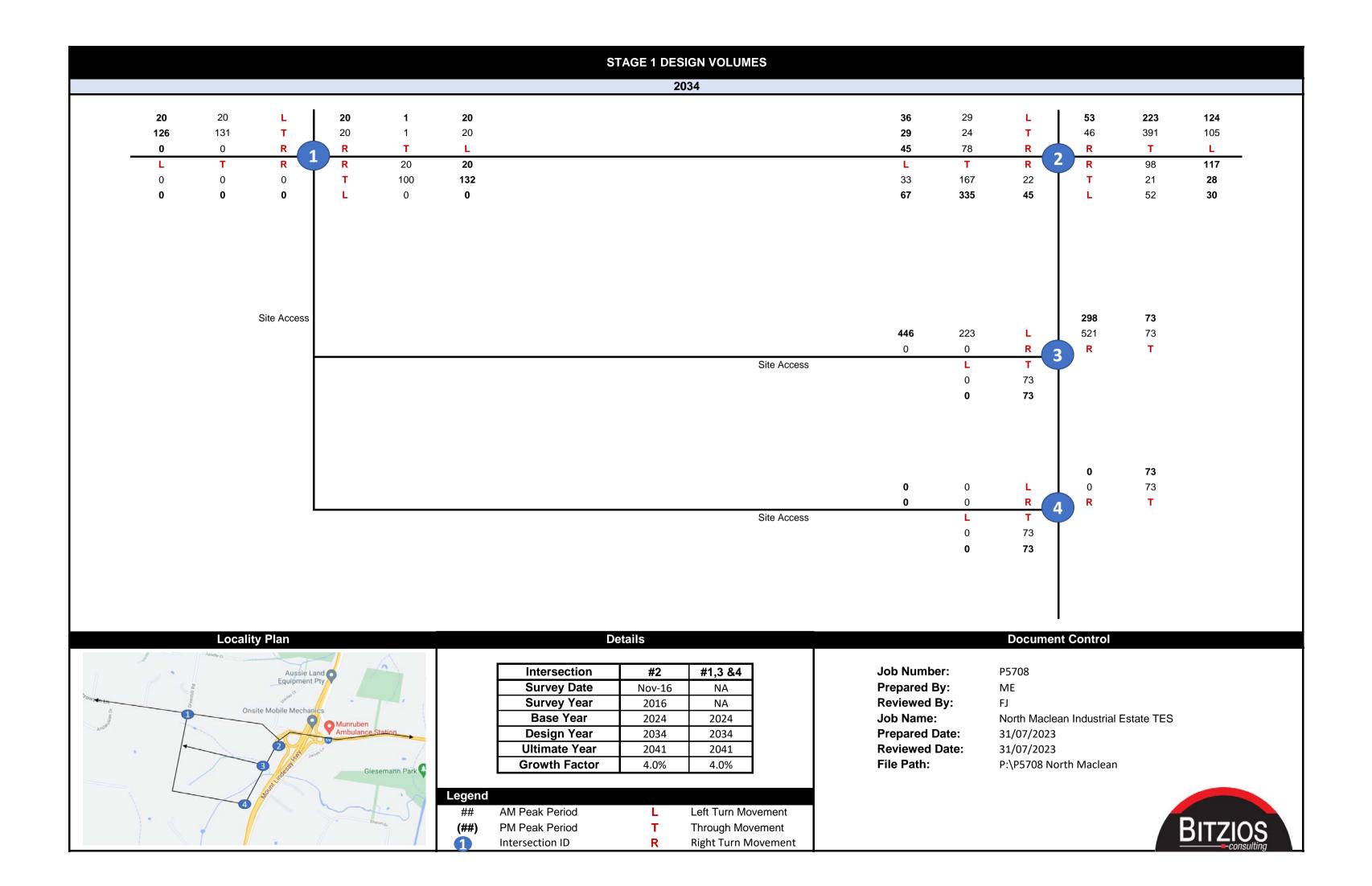
Table 5. External Traffic Distribution

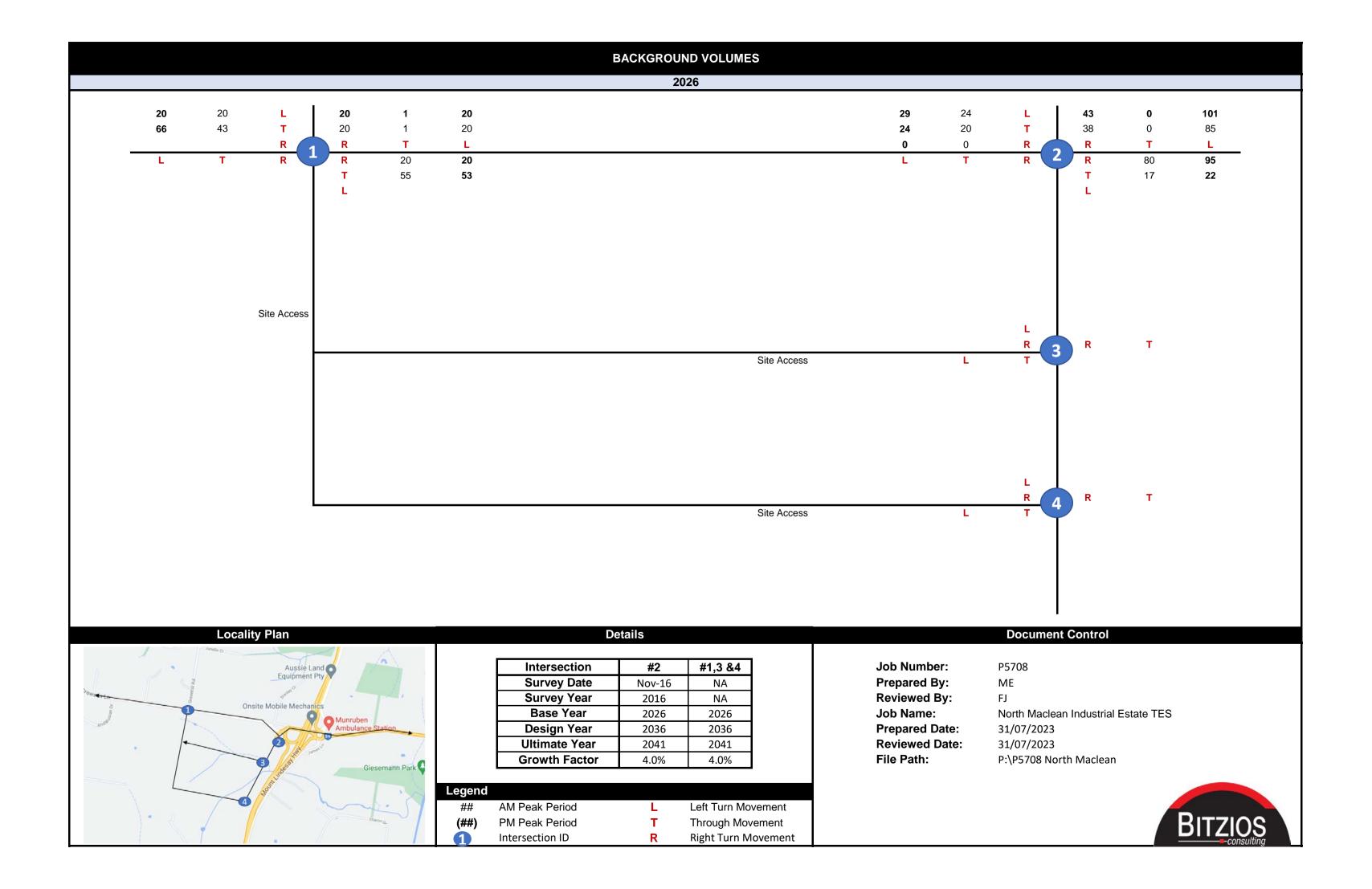
Direction	%
To / from north on Mt Lindesay	65%
To / from south on Mt Lindesay	10%
To / from east on Chambers Flat	10%
To / from west on Crowson	15%

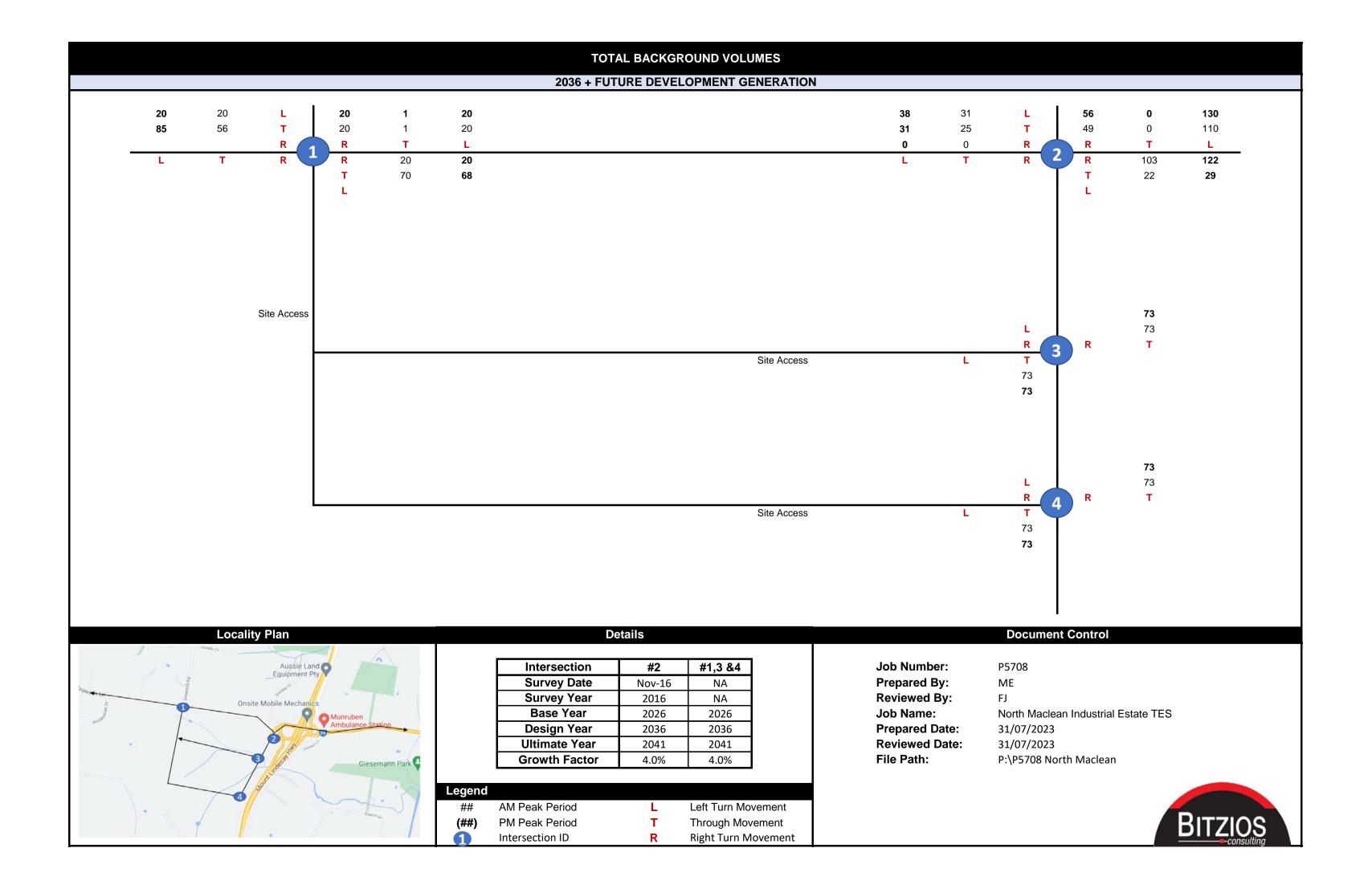

Locality Plan		D	etails		
Aussie Land		Intersection	#2	#1,3,4&5	Job Number:
Equipment Pty		Survey Date	Nov-16	NA	Prepared By:
Vowster to gate Onsite Mobile Mechanics		Survey Year	2016	NA	Reviewed By:
		Base Year	2024	2024	Job Name:
And ^a Ambulance Station		Design Year	2034	2034	Prepared Date:
		Ultimate Year	2041	2041	Reviewed Date:
3 Steast Giesemann Park		Growth Factor	4.0%	4.0%	File Path:
	Legend				
	##	AM Peak Period	L	Left Turn Movement	
Sharon G.	(##)	PM Peak Period	т	Through Movement	
		Intersection ID	R	Right Turn Movement	




Document Control


P5708 ME FJ North Maclean Industrial Estate TES 31/07/2023 31/07/2023 P:\P5708 North Maclean I





DEVELOPMENT TRAFFIC GENERATION

Table 1. Adopted Trip Generation Rates

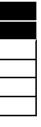
Land Use	AM Peak	PM Peak	Unit	Source
Industrial	0.4	0.4	Trips/ 100sqm GFA	DEV2018/961

Table 2. Adopted Directional Distribution

Land Use	AM Peak		PM Peak	
Lanu Ose	Inbound	Outbound	Inbound	Outbound
Industrial	70%	30%	40%	60%

Table 3. Yields

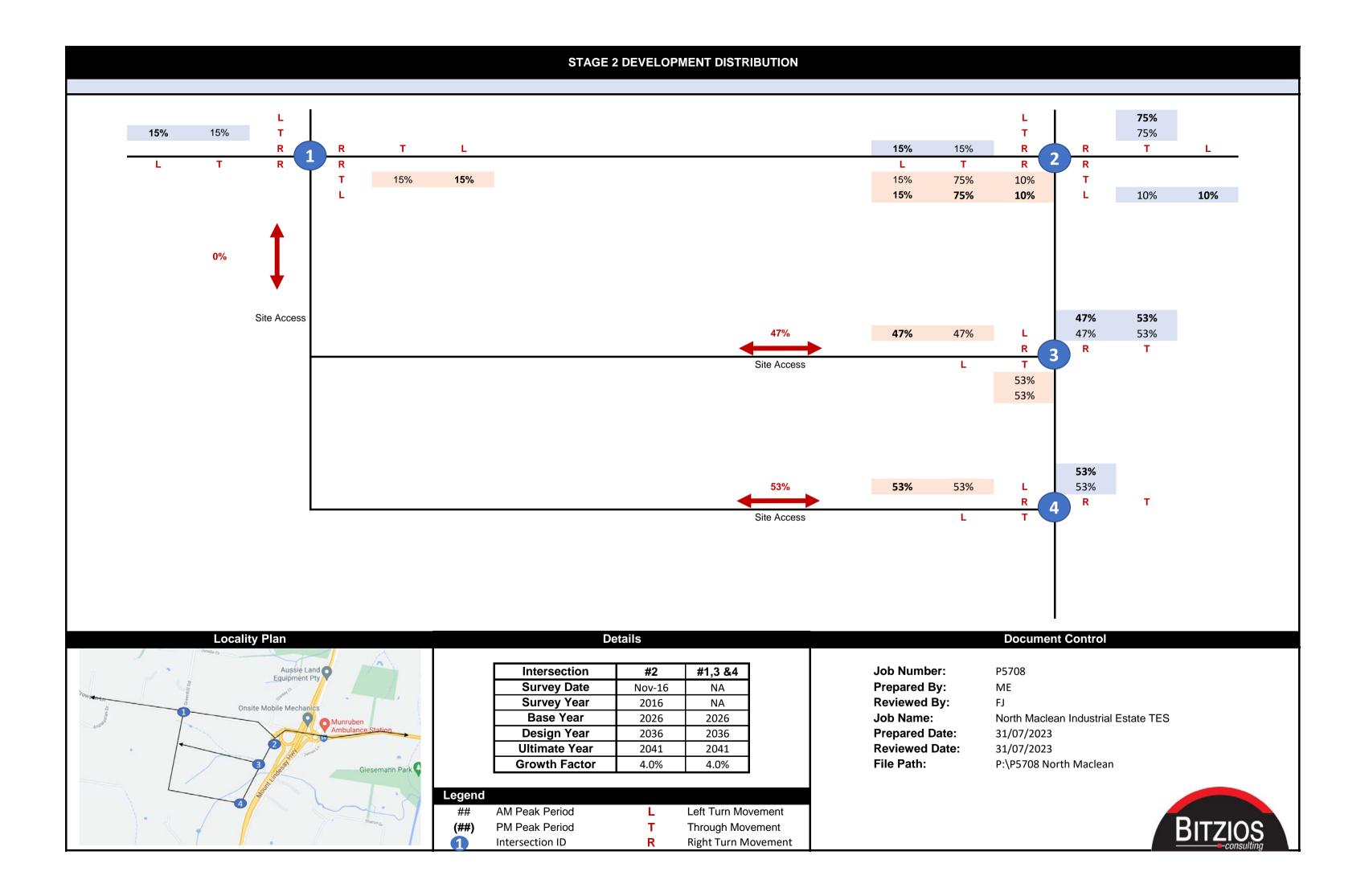
Stage	Yield (sqm)
1	186,017
2	208,817
3	125,167
Total	520,001


Table 4. Total Expansion Traffic Volumes

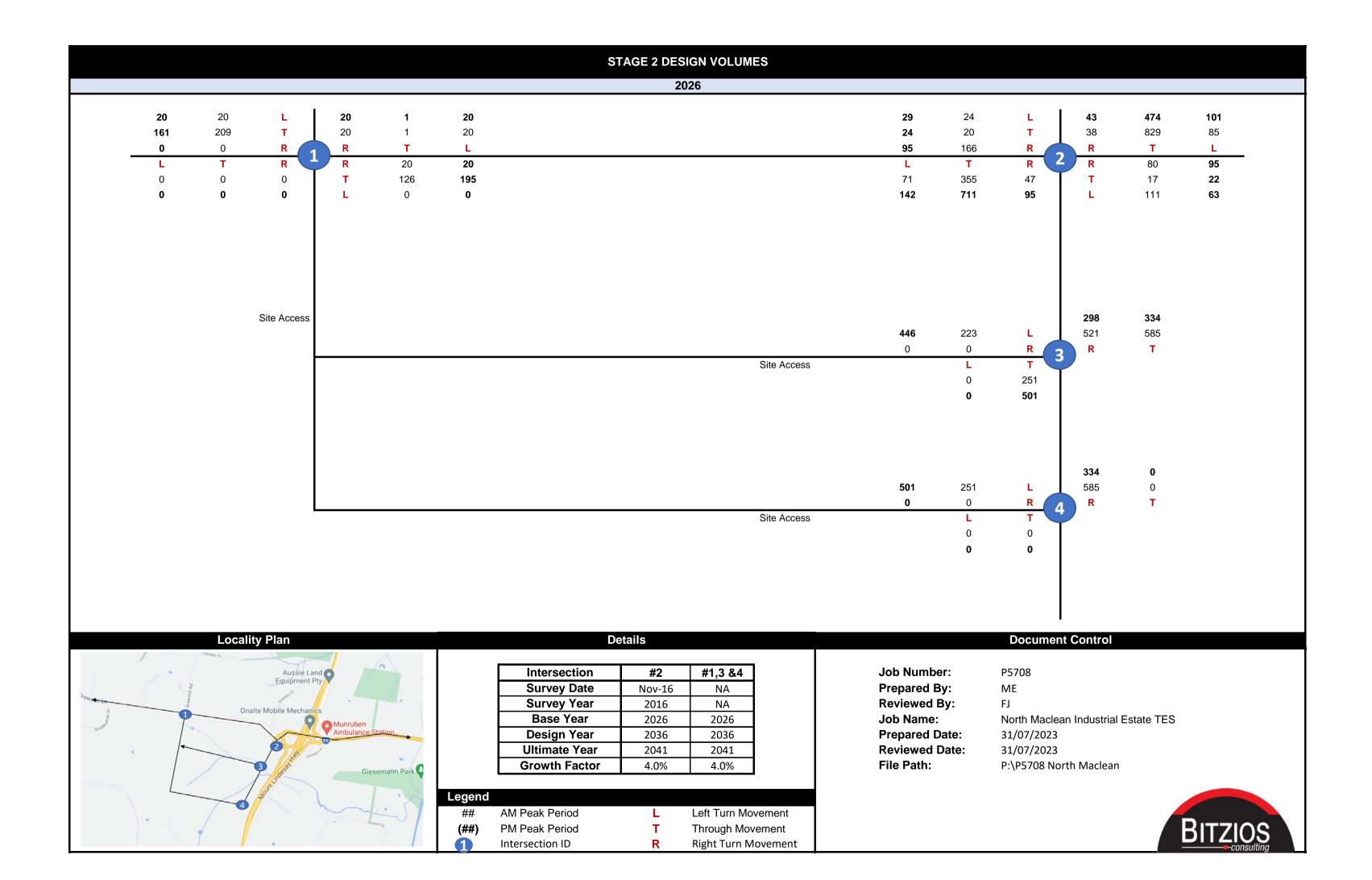
Land Use	AM			PM		
Lanu Ose	Inbound	Outbound	Total	Inbound	Outbound	Total
1	521	223	744	298	446	744
2	585	251	835	334	501	835
3						
Total	1,106	474	1,579	632	948	1,579

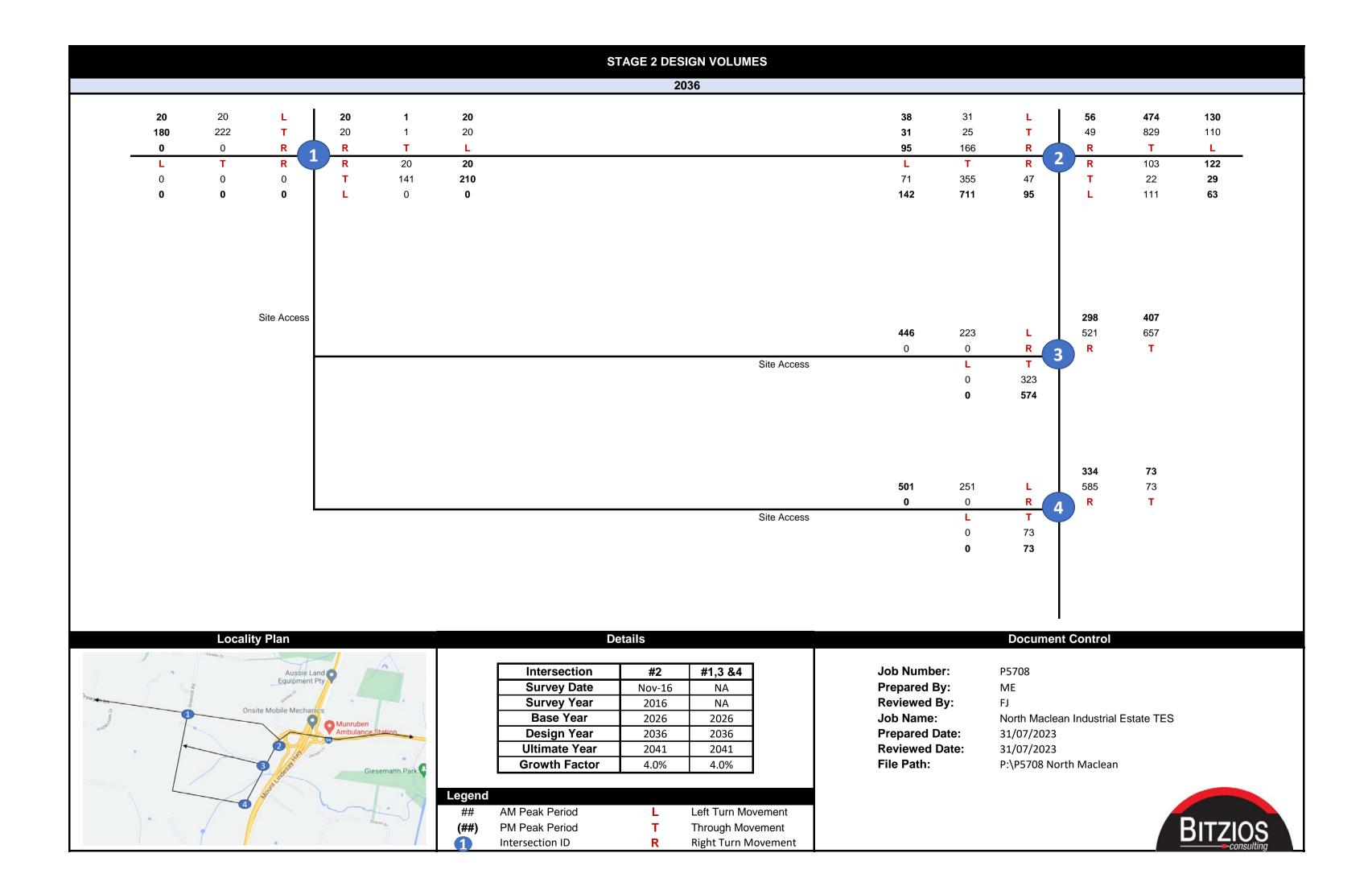
Table 5. External Traffic Distribution

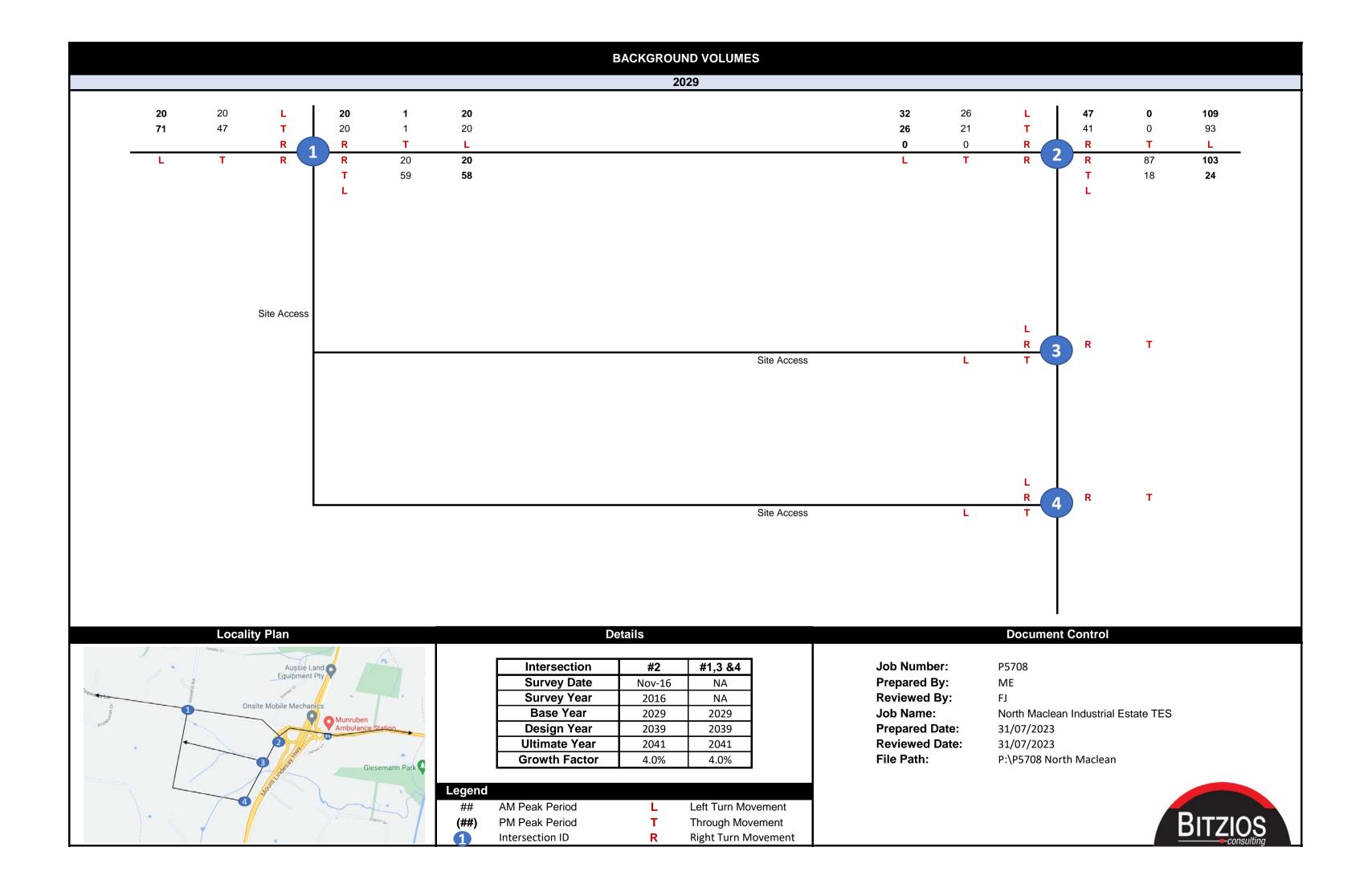
Direction	%
To / from north on Mt Lindesay	65%
To / from south on Mt Lindesay	10%
To / from east on Chambers Flat	10%
To / from west on Crowson	15%

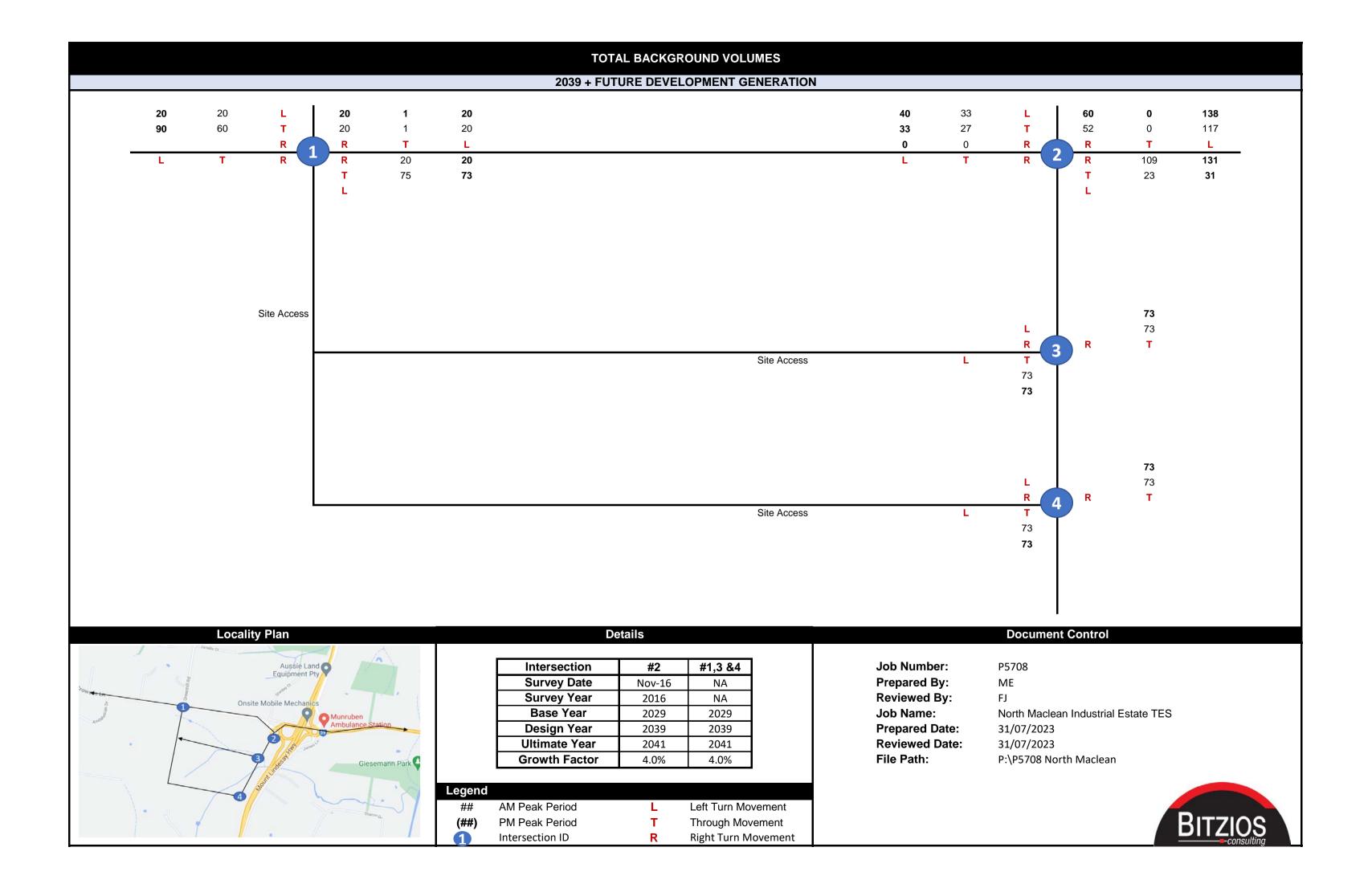

Locality Plan		D	etails		
Aussie Land Equipment Pty		Intersection	#2	#1,3,4&5	Job Number:
Equipment Pty		Survey Date	Nov-16	NA	Prepared By:
Vowster En State Onsite Mobile Mechanics		Survey Year	2016	NA	Reviewed By:
		Base Year	2026	2026	Job Name:
And ^o Ambulance Station		Design Year	2036	2036	Prepared Date:
• 2 3		Ultimate Year	2041	2041	Reviewed Date:
3 Best Giesemann Park		Growth Factor	4.0%	4.0%	File Path:
	Legend				
	##	AM Peak Period	L	Left Turn Movement	
-Shator G.	(##)	PM Peak Period	т	Through Movement	
	1	Intersection ID	R	Right Turn Movement	

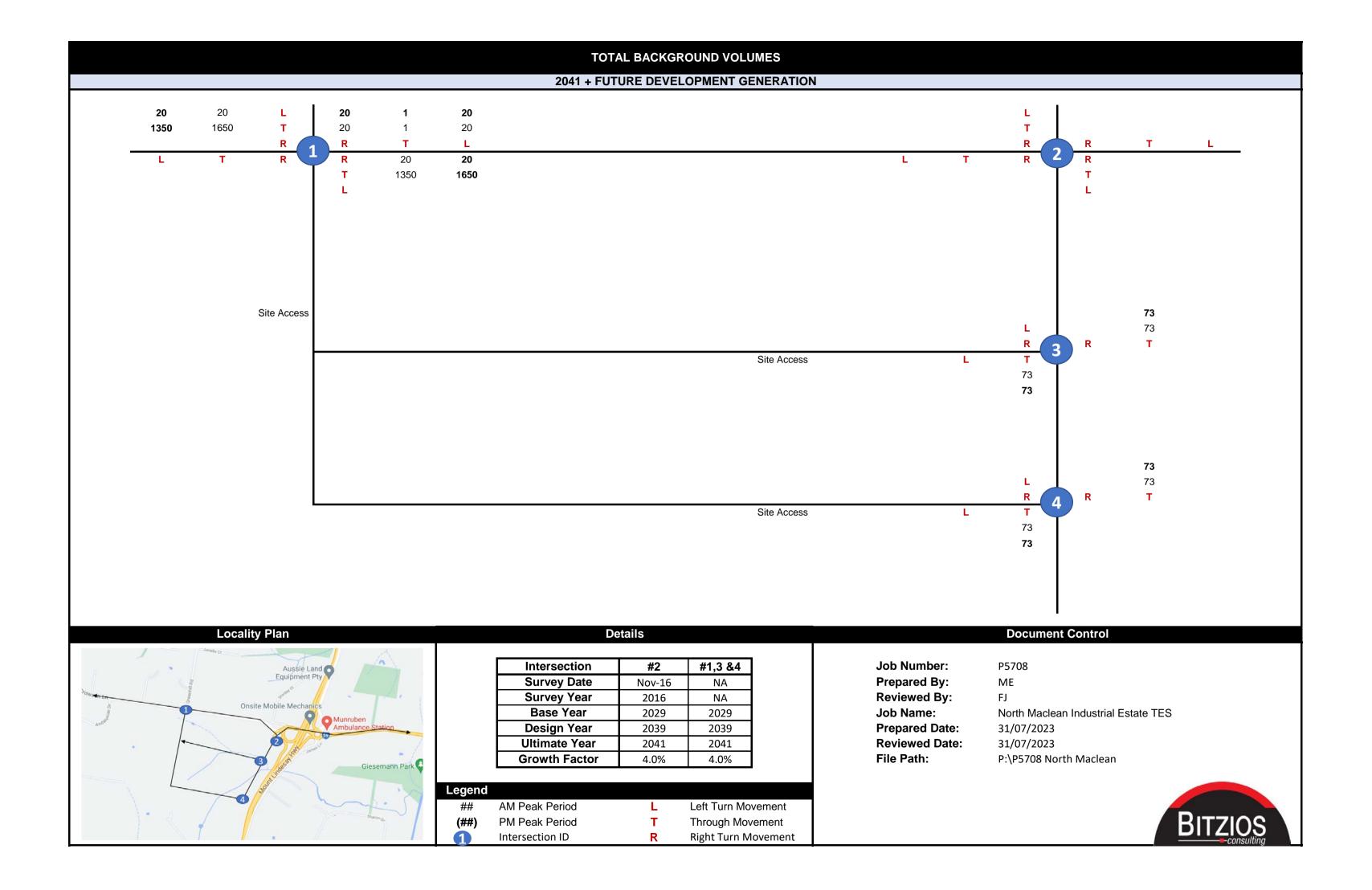



Document Control


P5708 ME FJ North Maclean Industrial Estate TES 31/07/2023 31/07/2023 P:\P5708 North Maclean I







DEVELOPMENT TRAFFIC GENERATION

Table 1. Adopted Trip Generation Rates

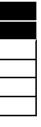
Land Use	AM Peak	PM Peak	Unit	Source
Industrial	0.4	0.4	Trips/ 100sqm GFA	DEV2018/961

Table 2. Adopted Directional Distribution

Land Use	AM Peak		PM Peak	
Lanu Ose	Inbound	Outbound	Inbound	Outbound
Industrial	70%	30%	40%	60%

Table 3. Yields

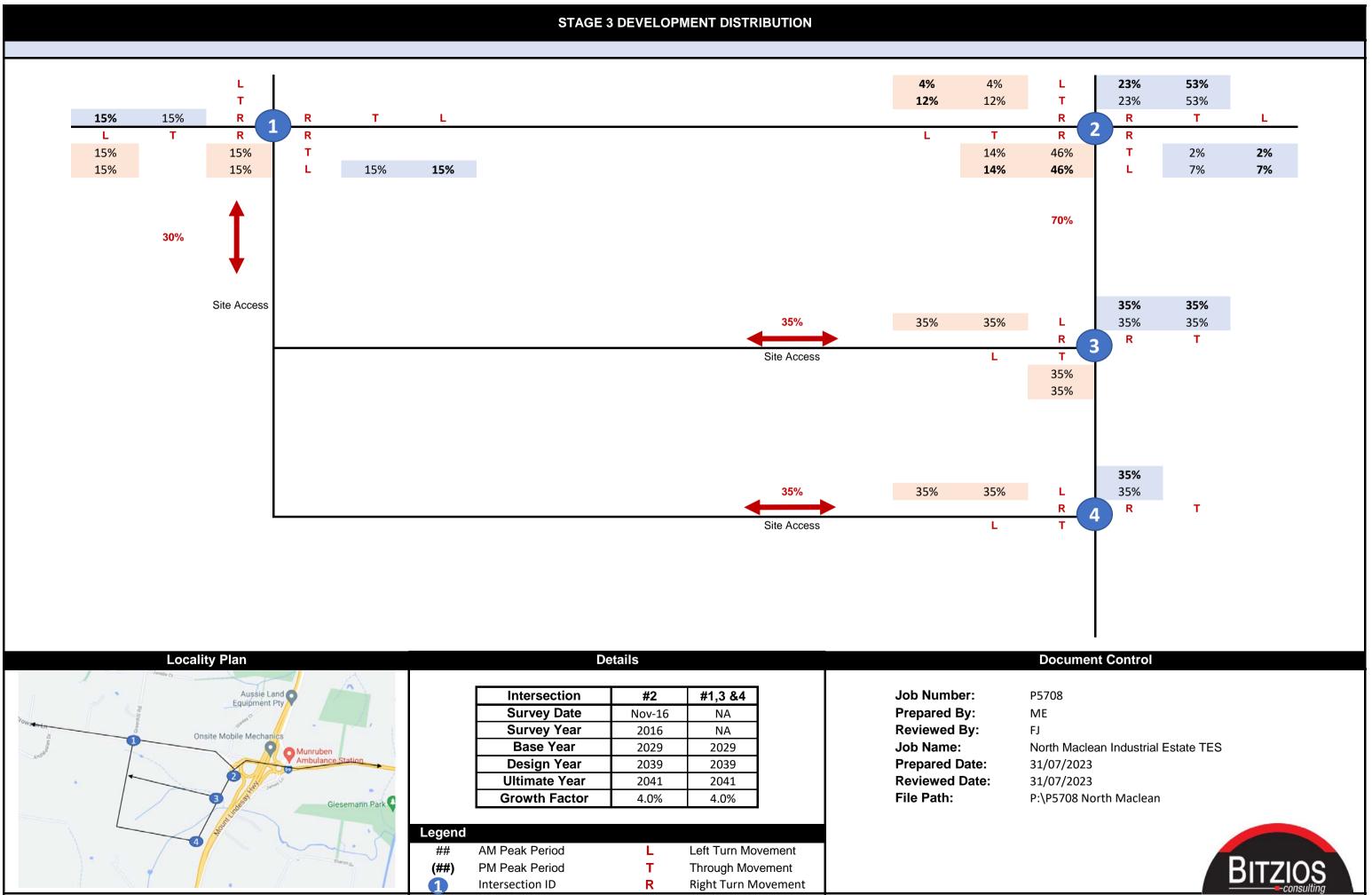
Stage	Yield (sqm)
1	186,017
2	208,817
3	125,167
Total	520,001

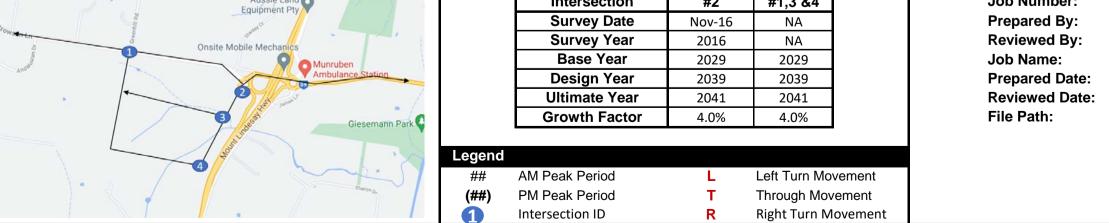

Table 4. Total Expansion Traffic Volumes

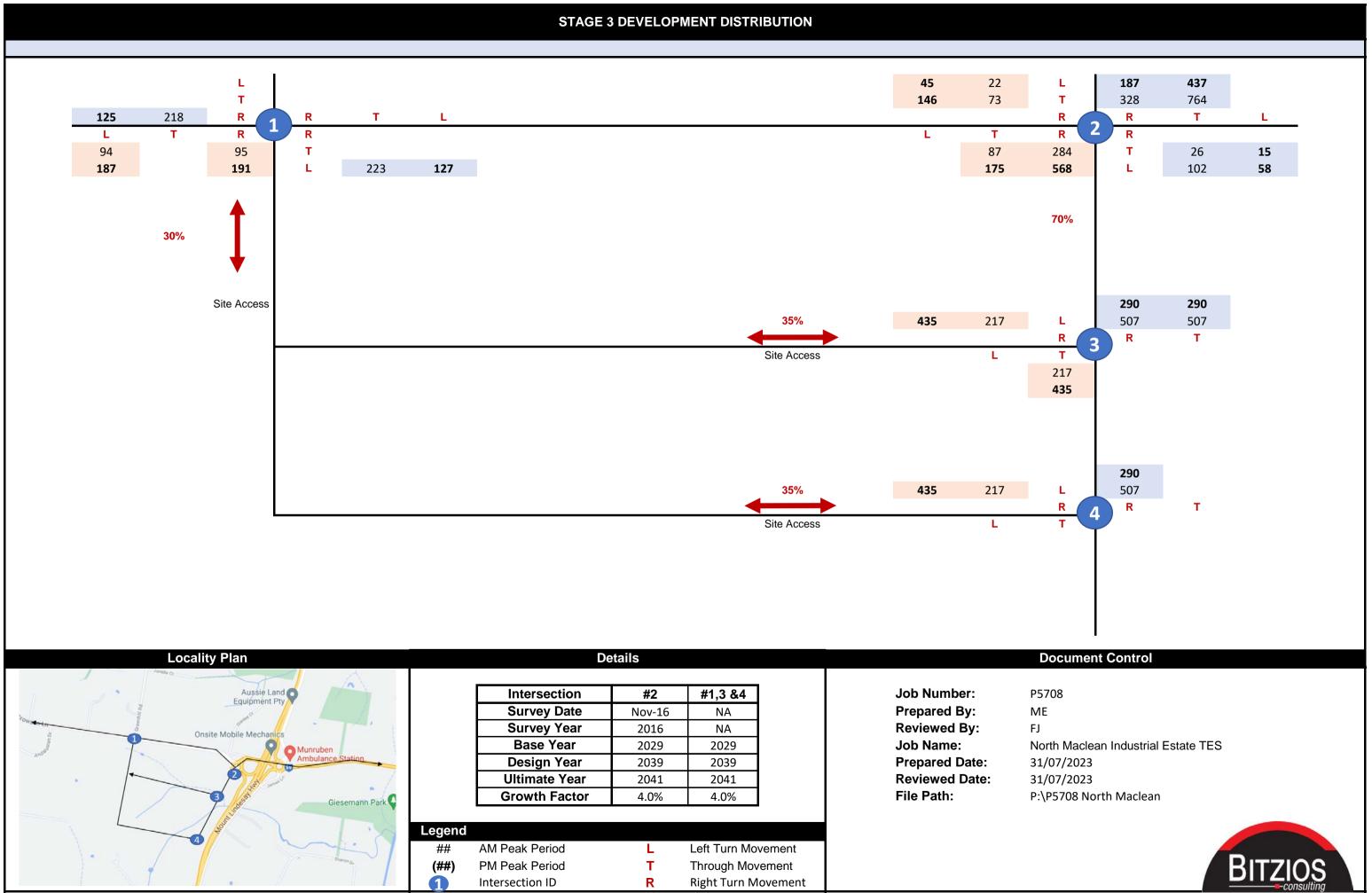
Land Use	AM			PM		
Land Use	Inbound	Outbound	Total	Inbound	Outbound	Total
1	521	223	744	298	446	744
2	585	251	835	334	501	835
3	350	150	501	200	300	501
Total	1,456	624	2,080	832	1,248	2,080

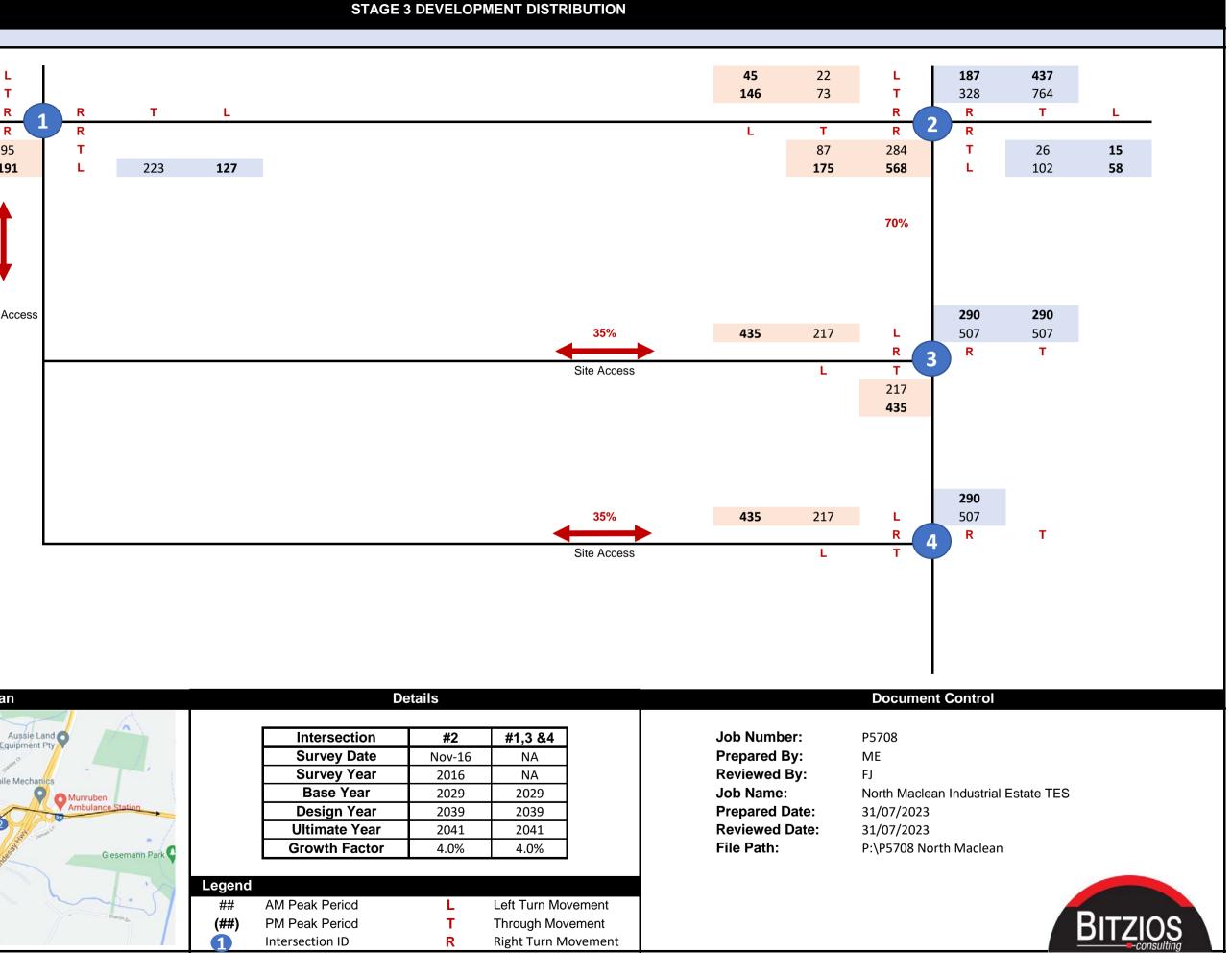
Table 5. External Traffic Distribution

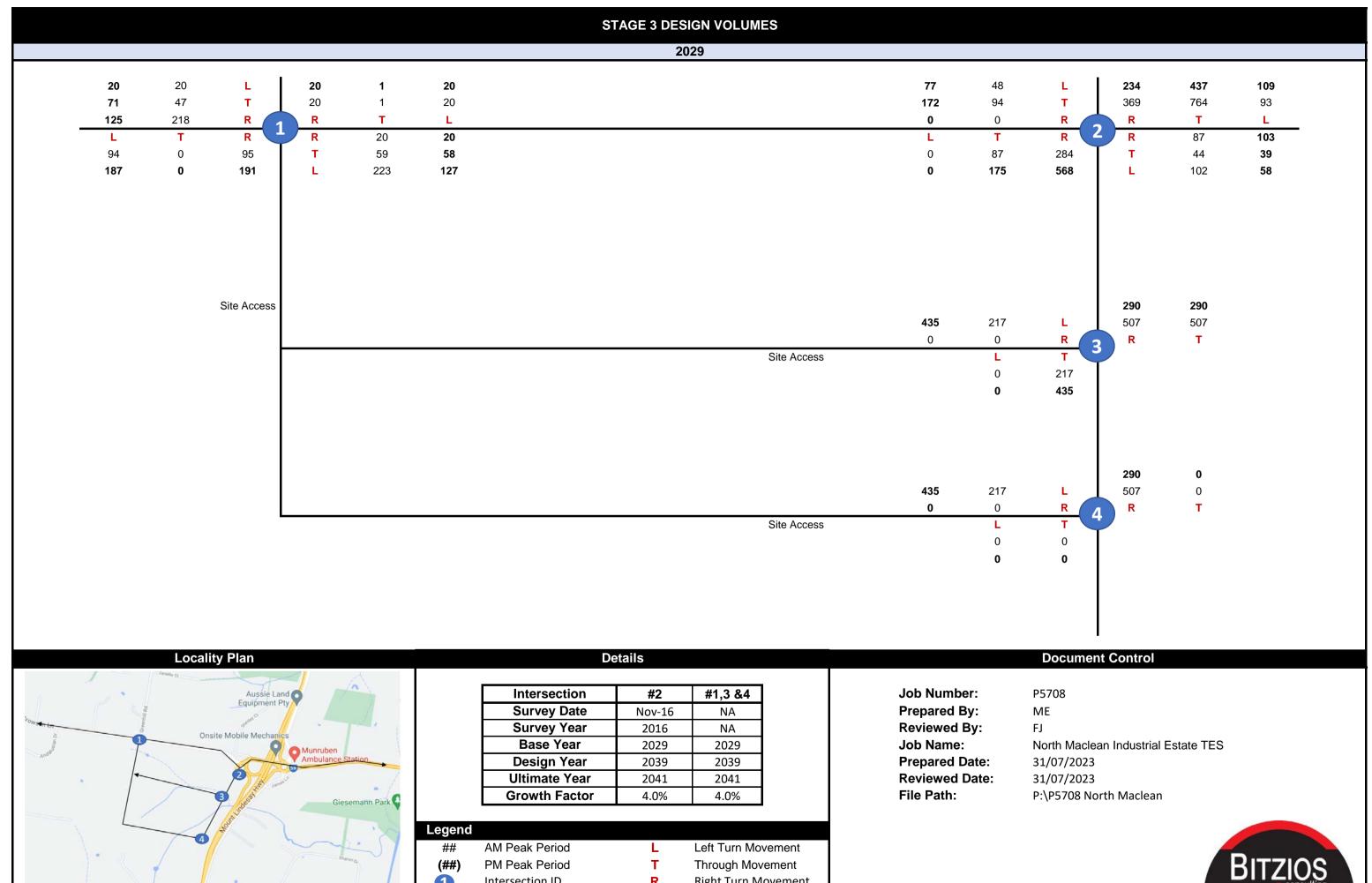
Direction	%
To / from north on Mt Lindesay	65%
To / from south on Mt Lindesay	10%
To / from east on Chambers Flat	10%
To / from west on Crowson	15%

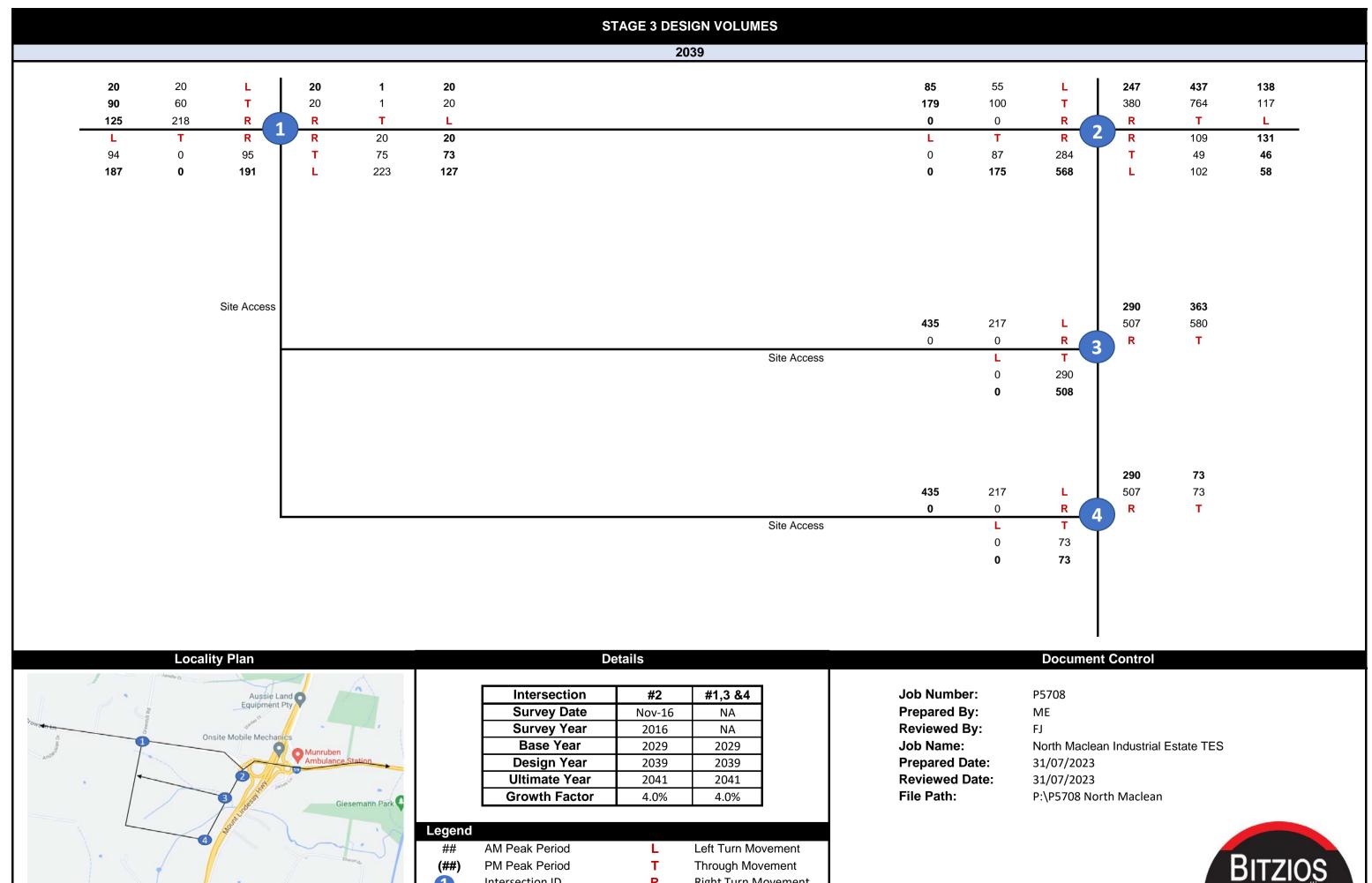

Locality Plan		D	etails		
Aussie Land		Intersection	#2	#1,3,4&5	Job Number:
Equipment Pty		Survey Date	Nov-16	NA	Prepared By:
Vowster to gate Onsite Mobile Mechanics		Survey Year	2016	NA	Reviewed By:
		Base Year	2029	2029	Job Name:
And ^a Ambulance Station		Design Year	2039	2039	Prepared Date:
		Ultimate Year	2041	2041	Reviewed Date:
3 Steast Giesemann Park		Growth Factor	4.0%	4.0%	File Path:
	Legend				
	##	AM Peak Period	L	Left Turn Movement	
Sharon G.	(##)	PM Peak Period	т	Through Movement	
		Intersection ID	R	Right Turn Movement	

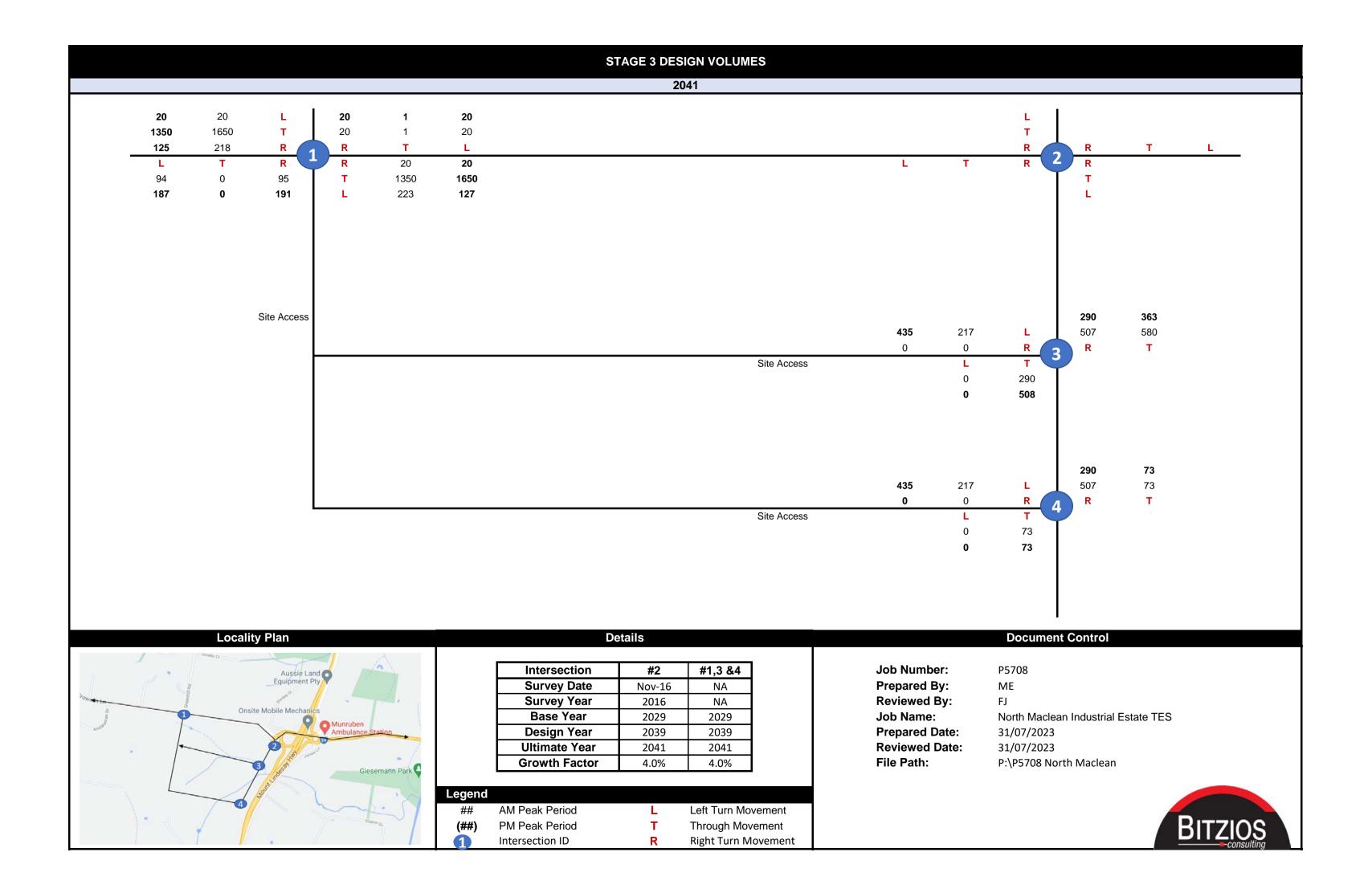



Document Control


P5708 ME FJ North Maclean Industrial Estate TES 31/07/2023 31/07/2023 P:\P5708 North Maclean I

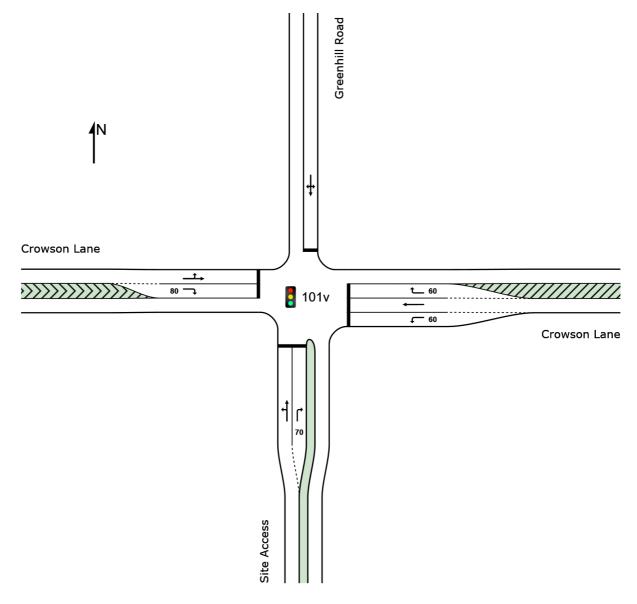






Locality Flam			cialis		
Januar cr Aussie Land		Intersection	#2	#1,3 &4	Job Number:
Equipment Pty		Survey Date	Nov-16	NA	Prepared By:
Yowanta get Onsite Mobile Mechanics		Survey Year	2016	NA	Reviewed By:
		Base Year	2029	2029	Job Name:
Ander Munruben Ambulance Station		Design Year	2039	2039	Prepared Date:
		Ultimate Year	2041	2041	Reviewed Date:
3 Giesemann Park		Growth Factor	4.0%	4.0%	File Path:
	Legend				
	##	AM Peak Period	L	Left Turn Movement	
	(##)	PM Peak Period	т	Through Movement	
	1	Intersection ID	R	Right Turn Movement	

Appendix C: SIDRA Outputs


SITE LAYOUT

Site: 101v [2029 AM - BG+DEV - Interim - 2 Lanes (Site Folder: General)]

- P5708

North Maclean Industrial Estate
 Prepared By: FJ
 Site Category: (None)
 Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Monday, 31 July 2023 8:53:20 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\Access 1\P5708.001M_Access 1 -0.4.sip9

Site: 101v [2029 AM - BG+DEV - Interim - 2 Lanes (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

- P5708

- North Maclean Industrial Estate

- Prepared By: FJ

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Practical Cycle Time)

Vehic	cle Mo	oveme <u>n</u> t	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %		Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Site	Access											
1	L2	All MCs	99 33.0	99 33.0	0.775	45.9	LOS D	3.9	34.9	1.00	0.93	1.35	32.5
2	T1	All MCs	1 33.0	1 33.0	*0.775	40.0	LOS D	3.9	34.9	1.00	0.93	1.35	34.4
3	R2	All MCs	100 33.0	100 33.0	0.776	45.9	LOS D	3.9	34.9	1.00	0.93	1.35	32.5
Appro	ach		200 33.0	200 33.0	0.776	45.9	LOS D	3.9	34.9	1.00	0.93	1.35	32.5
East:	Crows	son Lane											
4	L2	All MCs	235 33.0	235 33.0	*0.781	27.1	LOS C	5.1	46.2	1.00	0.89	1.22	43.5
5	T1	All MCs	62 10.0	62 10.0	0.170	13.4	LOS B	1.0	7.6	0.86	0.65	0.86	61.8
6	R2	All MCs	21 10.0	21 10.0	0.121	39.5	LOS D	0.7	5.3	0.94	0.70	0.94	37.9
Appro	ach		318 27.0	318 27.0	0.781	25.2	LOS C	5.1	46.2	0.97	0.83	1.13	45.7
North	Gree	nhill Road	Ł										
7	L2	All MCs	21 10.0	21 10.0	0.290	40.5	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
8	T1	All MCs	1 10.0	1 10.0	*0.290	34.9	LOS C	1.5	11.3	0.97	0.73	0.97	36.1
9	R2	All MCs	21 10.0	21 10.0	0.290	40.5	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
Appro	ach		43 10.0	43 10.0	0.290	40.4	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
West:	Crow	son Lane											
10	L2	All MCs	21 10.0	21 10.0	0.102	22.0	LOS C	1.5	11.7	0.67	0.59	0.67	49.9
11	T1	All MCs	49 10.0	49 10.0	0.102	14.8	LOS B	1.5	11.7	0.67	0.59	0.67	58.4
12	R2	All MCs	229 33.0	229 33.0	*0.763	40.6	LOS D	8.3	74.9	1.00	0.90	1.19	37.4
Appro	ach		300 27.6	300 27.6	0.763	35.0	LOS D	8.3	74.9	0.92	0.82	1.07	40.5
All Ve	hicles		861 27.7	861 27.7	0.781	34.2	LOS C	8.3	74.9	0.96	0.85	1.15	39.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 19 July 2023 9:35:33 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\Access 1\P5708.001M_Access 1 -0.4.sip9

Site: 101v [2029 PM - BG+DEV - Interim - 2 lanes (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

- P5708

- North Maclean Industrial Estate

- Prepared By: FJ

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Practical Cycle Time)

Vehio	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Site	Access											
1	L2	All MCs	197 33.0	197 33.0	0.709	38.0	LOS D	7.0	62.7	0.99	0.88	1.12	34.9
2	T1	All MCs	1 33.0	1 33.0	0.709	32.1	LOS C	7.0	62.7	0.99	0.88	1.12	37.1
3	R2	All MCs	201 33.0	201 33.0	*0.720	38.4	LOS D	7.1	64.1	0.99	0.89	1.14	34.9
Appro	ach		399 33.0	399 33.0	0.720	38.2	LOS D	7.1	64.1	0.99	0.88	1.13	34.9
East:	Crows	son Lane											
4	L2	All MCs	134 33.0	134 33.0	* 0.519	24.6	LOS C	2.9	26.5	0.95	0.79	0.95	44.8
5	T1	All MCs	61 10.0	61 10.0	0.195	15.6	LOS B	1.2	9.4	0.89	0.67	0.89	59.7
6	R2	All MCs	21 10.0	21 10.0	0.142	40.9	LOS D	0.7	5.4	0.96	0.70	0.96	37.4
Appro	ach		216 24.2	216 24.2	0.519	23.6	LOS C	2.9	26.5	0.94	0.74	0.94	47.2
North	Gree	nhill Road	Ł										
7	L2	All MCs	21 10.0	21 10.0	0.290	40.5	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
8	T1	All MCs	1 10.0	1 10.0	*0.290	34.9	LOS C	1.5	11.3	0.97	0.73	0.97	36.1
9	R2	All MCs	21 10.0	21 10.0	0.290	40.5	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
Appro	ach		43 10.0	43 10.0	0.290	40.4	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
West:	Crow	son Lane											
10	L2	All MCs	21 10.0	21 10.0	0.177	26.9	LOS C	2.5	18.6	0.78	0.65	0.78	47.1
11	T1	All MCs	75 10.0	75 10.0	0.177	19.8	LOS B	2.5	18.6	0.78	0.65	0.78	54.6
12	R2	All MCs	132 33.0	132 33.0	*0.681	42.6	LOS D	4.8	42.7	1.00	0.85	1.15	36.7
Appro	ach		227 23.3	227 23.3	0.681	33.6	LOS C	4.8	42.7	0.91	0.76	0.99	42.1
All Ve	hicles		885 27.3	885 27.3	0.720	33.6	LOS C	7.1	64.1	0.95	0.81	1.04	39.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 19 July 2023 9:34:05 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\Access 1\P5708.001M_Access 1 -0.4.sip9

Site: 101v [2039 AM - BG+DEV - Interim - 2 lanes (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

- P5708

- North Maclean Industrial Estate

- Prepared By: FJ

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Practical Cycle Time)

Vehic	cle Mo	oveme <u>n</u> t	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %		Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Site	Access											
1	L2	All MCs	99 33.0	99 33.0	0.775	45.9	LOS D	3.9	34.9	1.00	0.93	1.35	32.5
2	T1	All MCs	1 33.0	1 33.0	*0.775	40.0	LOS D	3.9	34.9	1.00	0.93	1.35	34.4
3	R2	All MCs	100 33.0	100 33.0	0.776	45.9	LOS D	3.9	34.9	1.00	0.93	1.35	32.5
Appro	ach		200 33.0	200 33.0	0.776	45.9	LOS D	3.9	34.9	1.00	0.93	1.35	32.5
East:	Crows	son Lane											
4	L2	All MCs	235 33.0	235 33.0	*0.781	27.1	LOS C	5.1	46.2	1.00	0.89	1.22	43.5
5	T1	All MCs	79 10.0	79 10.0	0.216	13.6	LOS B	1.3	9.8	0.87	0.67	0.87	61.7
6	R2	All MCs	21 10.0	21 10.0	0.121	39.5	LOS D	0.7	5.3	0.94	0.70	0.94	37.9
Appro	ach		335 26.1	335 26.1	0.781	24.7	LOS C	5.1	46.2	0.97	0.83	1.12	46.3
North	Gree	nhill Road	ł										
7	L2	All MCs	21 10.0	21 10.0	0.290	40.5	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
8	T1	All MCs	1 10.0	1 10.0	*0.290	34.9	LOS C	1.5	11.3	0.97	0.73	0.97	36.1
9	R2	All MCs	21 10.0	21 10.0	0.290	40.5	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
Appro	ach		43 10.0	43 10.0	0.290	40.4	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
West:	Crow	son Lane											
10	L2	All MCs	21 10.0	21 10.0	0.121	22.1	LOS C	1.9	14.1	0.68	0.59	0.68	50.0
11	T1	All MCs	63 10.0	63 10.0	0.121	15.0	LOS B	1.9	14.1	0.68	0.59	0.68	58.6
12	R2	All MCs	229 33.0	229 33.0	*0.763	40.6	LOS D	8.3	74.9	1.00	0.90	1.19	37.4
Appro	ach		314 26.8	314 26.8	0.763	34.2	LOS C	8.3	74.9	0.91	0.81	1.05	41.1
All Ve	hicles		892 27.1	892 27.1	0.781	33.5	LOS C	8.3	74.9	0.95	0.84	1.14	40.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 19 July 2023 9:34:06 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\Access 1\P5708.001M_Access 1 -0.4.sip9

Site: 101v [2039 PM - BG+DEV - Interim - 2 lanes (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

- P5708

- North Maclean Industrial Estate

- Prepared By: FJ

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Practical Cycle Time)

Vehio	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Site	Access											
1	L2	All MCs	197 33.0	197 33.0	0.709	38.0	LOS D	7.0	62.7	0.99	0.88	1.12	34.9
2	T1	All MCs	1 33.0	1 33.0	0.709	32.1	LOS C	7.0	62.7	0.99	0.88	1.12	37.1
3	R2	All MCs	201 33.0	201 33.0	*0.720	38.4	LOS D	7.1	64.1	0.99	0.89	1.14	34.9
Appro	ach		399 33.0	399 33.0	0.720	38.2	LOS D	7.1	64.1	0.99	0.88	1.13	34.9
East:	Crows	son Lane											
4	L2	All MCs	134 33.0	134 33.0	* 0.519	24.6	LOS C	2.9	26.5	0.95	0.79	0.95	44.8
5	T1	All MCs	77 10.0	77 10.0	0.245	15.7	LOS B	1.6	11.9	0.90	0.69	0.90	59.5
6	R2	All MCs	21 10.0	21 10.0	0.142	40.9	LOS D	0.7	5.4	0.96	0.70	0.96	37.4
Appro	ach		232 23.3	232 23.3	0.519	23.1	LOS C	2.9	26.5	0.94	0.74	0.94	47.9
North	Gree	nhill Road	Ł										
7	L2	All MCs	21 10.0	21 10.0	0.290	40.5	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
8	T1	All MCs	1 10.0	1 10.0	*0.290	34.9	LOS C	1.5	11.3	0.97	0.73	0.97	36.1
9	R2	All MCs	21 10.0	21 10.0	0.290	40.5	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
Appro	ach		43 10.0	43 10.0	0.290	40.4	LOS D	1.5	11.3	0.97	0.73	0.97	36.3
West:	Crow	son Lane											
10	L2	All MCs	21 10.0	21 10.0	0.213	27.2	LOS C	3.0	22.8	0.79	0.65	0.79	47.1
11	T1	All MCs	95 10.0	95 10.0	0.213	20.0	LOS C	3.0	22.8	0.79	0.65	0.79	54.6
12	R2	All MCs	132 33.0	132 33.0	* 0.681	42.6	LOS D	4.8	42.7	1.00	0.85	1.15	36.7
Appro	ach		247 22.2	247 22.2	0.681	32.6	LOS C	4.8	42.7	0.90	0.76	0.98	42.9
All Ve	hicles		921 26.6	921 26.6	0.720	33.0	LOS C	7.1	64.1	0.95	0.81	1.03	39.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

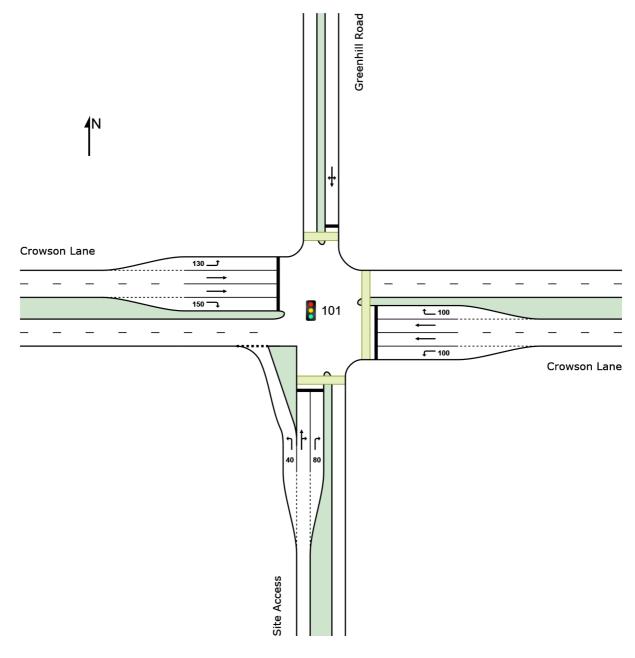
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)


SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 19 July 2023 9:34:06 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\Access 1\P5708.001M_Access 1 -0.4.sip9

SITE LAYOUT Site: 101 [2041 AM - BG+DEV - Ultimate (Site Folder: General)]

- P5708

North Maclean Industrial Subdivision
 Prepared By: FJ
 Site Category: (None)
 Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Monday, 31 July 2023 8:53:27 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\Access 1\P5708.001M_Access 1 -0.4.sip9

Site: 101 [2041 AM - BG+DEV - Ultimate (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

- P5708

- North Maclean Industrial Subdivision

- Prepared By: FJ

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 140 seconds (Site Optimum Cycle Time - Minimum Delay)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Site	Access											
1	L2	All MCs	99 33.0	99 33.0	0.173	19.9	LOS B	3.0	27.3	0.53	0.69	0.53	42.5
2	T1	All MCs	1 33.0	1 33.0	*0.784	81.1	LOS F	3.8	34.5	1.00	0.88	1.29	24.9
3	R2	All MCs	100 33.0	100 33.0	0.784	87.1	LOS F	3.8	34.5	1.00	0.88	1.29	24.0
Appro	bach		200 33.0	200 33.0	0.784	53.8	LOS D	3.8	34.5	0.77	0.78	0.91	30.6
East:	Crows	on Lane											
4	L2	All MCs	235 33.0	235 33.0	0.308	38.2	LOS D	9.2	82.9	0.62	0.77	0.62	42.5
5	T1	All MCs	1421 10.0	1421 10.0	*0.819	42.4	LOS D	43.0	326.6	0.91	0.84	0.92	47.7
6	R2	All MCs	21 10.0	21 10.0	0.283	95.2	LOS F	1.5	11.3	1.00	0.71	1.00	26.5
Appro	bach		1677 13.2	1677 13.2	0.819	42.4	LOS D	43.0	326.6	0.87	0.83	0.88	46.5
North	: Gree	nhill Road	ł										
7	L2	All MCs	21 10.0	21 10.0	0.300	73.3	LOS E	2.9	21.8	0.98	0.74	0.98	27.6
8	T1	All MCs	1 10.0	1 10.0	*0.300	66.6	LOS E	2.9	21.8	0.98	0.74	0.98	27.4
9	R2	All MCs	21 10.0	21 10.0	0.300	72.3	LOS E	2.9	21.8	0.98	0.74	0.98	27.6
Appro	bach		43 10.0	43 10.0	0.300	72.6	LOS E	2.9	21.8	0.98	0.74	0.98	27.6
West:	Crow	son Lane											
10	L2	All MCs	21 10.0	21 10.0	0.019	19.9	LOS B	0.5	3.7	0.37	0.67	0.37	50.5
11	T1	All MCs	1737 10.0	1737 10.0	0.734	19.3	LOS B	38.9	295.4	0.72	0.66	0.72	58.6
12	R2	All MCs	229 33.0	229 33.0	*0.822	75.4	LOS E	16.5	147.8	1.00	0.92	1.15	28.1
Appro	bach		1987 12.7	1987 12.7	0.822	25.8	LOS C	38.9	295.4	0.75	0.69	0.77	52.0
All Ve	hicles		3907 13.9	3907 13.9	0.822	34.9	LOS C	43.0	326.6	0.80	0.75	0.82	47.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance														
Mov ID Crossing	Input Vol.	Dem. Flow		Level of Service		EBACK OF EUE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed				
South: Site Ac	ped/h	ped/h	sec		ped	m			sec	m	m/sec				

P1 Full	10	11	64.2	LOS F	0.0	0.0	0.96	0.96	218.0	200.0	0.92
East: Crowson	Lane										
P2 Full	10	11	64.2	LOS F	0.0	0.0	0.96	0.96	218.0	200.0	0.92
North: Greenhi	ill Road										
P3 Full	15	16	64.2	LOS F	0.1	0.1	0.96	0.96	218.0	200.0	0.92
All Pedestrians	35	37	64.2	LOS F	0.1	0.1	0.96	0.96	218.0	200.0	0.92

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 19 July 2023 10:08:45 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\Access 1\P5708.001M_Access 1 -0.4.sip9

Site: 101 [2041 PM - BG+DEV - Ultimate (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

- P5708

- North Maclean Industrial Subdivision

- Prepared By: FJ

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum Delay)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Vehi	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Site	Access											
1	L2	All MCs	197 33.0	197 33.0	0.431	33.1	LOS C	9.1	81.4	0.71	0.77	0.71	38.0
2	T1	All MCs	1 33.0	1 33.0	*0.840	86.5	LOS F	8.1	73.0	1.00	0.94	1.27	24.5
3	R2	All MCs	201 33.0	201 33.0	0.840	91.0	LOS F	8.1	73.0	1.00	0.94	1.27	23.6
Appro	bach		399 33.0	399 33.0	0.840	62.4	LOS E	9.1	81.4	0.86	0.86	1.00	29.0
East:	Crows	on Lane											
4	L2	All MCs	134 33.0	134 33.0	0.153	36.2	LOS D	4.4	39.6	0.49	0.73	0.49	45.8
5	T1	All MCs	1737 10.0	1737 10.0	*0.866	44.8	LOS D	56.1	426.5	0.92	0.86	0.94	48.1
6	R2	All MCs	21 10.0	21 10.0	0.304	103.2	LOS F	1.6	12.2	1.00	0.71	1.00	25.4
Appro	bach		1892 11.6	1892 11.6	0.866	44.9	LOS D	56.1	426.5	0.89	0.85	0.91	47.5
North	: Gree	nhill Road	ł										
7	L2	All MCs	21 10.0	21 10.0	0.311	78.2	LOS E	3.1	23.5	0.98	0.74	0.98	26.5
8	T1	All MCs	1 10.0	1 10.0	* 0.311	72.6	LOS E	3.1	23.5	0.98	0.74	0.98	26.4
9	R2	All MCs	21 10.0	21 10.0	0.311	78.3	LOS E	3.1	23.5	0.98	0.74	0.98	26.5
Appro	bach		43 10.0	43 10.0	0.311	78.1	LOS E	3.1	23.5	0.98	0.74	0.98	26.5
West:	Crow	son Lane											
10	L2	All MCs	21 10.0	21 10.0	0.019	17.6	LOS B	0.5	4.1	0.38	0.67	0.38	49.7
11	T1	All MCs	1421 10.0	1421 10.0	0.607	16.9	LOS B	29.9	227.4	0.64	0.59	0.64	58.6
12	R2	All MCs	132 33.0	132 33.0	*0.875	92.4	LOS F	10.8	96.7	1.00	0.95	1.30	24.6
Appro	bach		1574 11.9	1574 11.9	0.875	23.2	LOS C	29.9	227.4	0.67	0.62	0.69	52.4
All Ve	hicles		3907 13.9	3907 13.9	0.875	38.3	LOS D	56.1	426.5	0.80	0.76	0.83	45.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

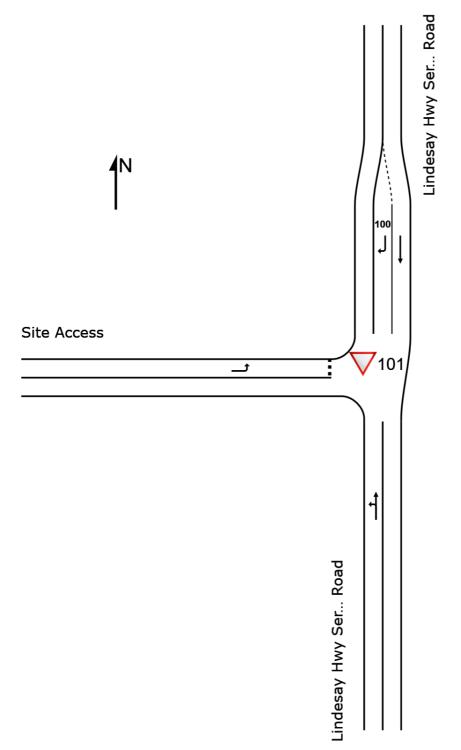
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance														
Mov ID Crossing	Input Vol.	Dem. Flow		Level of Service		EBACK OF EUE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed				
South: Site Ac	ped/h	ped/h	sec		ped	m			sec	m	m/sec				

P1 Full	10	11	69.2	LOS F	0.0	0.0	0.96	0.96	223.0	200.0	0.90
East: Crowson	Lane										
P2 Full	10	11	69.2	LOS F	0.0	0.0	0.96	0.96	223.0	200.0	0.90
North: Greenhi	ill Road										
P3 Full	10	11	69.2	LOS F	0.0	0.0	0.96	0.96	223.0	200.0	0.90
All Pedestrians	30	32	69.2	LOS F	0.0	0.0	0.96	0.96	223.0	200.0	0.90

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.


Intersection LOS value for Pedestrians is based on average delay per pedestrian movement.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 19 July 2023 10:07:13 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\Access 1\P5708.001M_Access 1 -0.4.sip9

SITE LAYOUT V Site: 101 [2024 AM BG + DEV (Site Folder: General)]

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Monday, 31 July 2023 8:47:45 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 1\P5332.002M_ Intersection 3.sip9

V Site: 101 [2024 AM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehio	cle Mo	ovement	Performan	ice									
Mov ID	Turn	Mov Class		Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	d									
1	L2	All MCs	1 33.0	1 33.0	0.001	5.9	LOS A	0.0	0.0	0.00	0.29	0.00	53.6
2	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.29	0.00	57.4
Appro	ach		2 33.0	2 33.0	0.001	3.0	NA	0.0	0.0	0.00	0.29	0.00	55.4
North	: Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	548 33.0	548 33.0	0.356	5.9	LOS A	2.3	20.9	0.03	0.59	0.03	51.1
Appro	ach		549 33.0	549 33.0	0.356	5.8	NA	2.3	20.9	0.03	0.59	0.03	51.1
West:	Site A	ccess											
10	L2	All MCs	235 33.0	235 33.0	0.167	5.9	LOS A	0.8	6.9	0.02	0.56	0.02	51.5
Appro	ach		235 33.0	235 33.0	0.167	5.9	LOS A	0.8	6.9	0.02	0.56	0.02	51.5
All Ve	hicles		786 33.0	786 33.0	0.356	5.9	NA	2.3	20.9	0.03	0.58	0.03	51.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 26 July 2023 4:12:22 PM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 1\P5332.002M_ Intersection 3.sip9

V Site: 101 [2024 PM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance													
Mov ID	Turn	Mov Class	Demand Flows [Total HV] [veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Lindesay Hwy Service Road													
1	L2	All MCs	1 33.0	1 33.0	0.001	5.9	LOS A	0.0	0.0	0.00	0.29	0.00	53.6
2	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.29	0.00	57.4
Appro	ach		2 33.0	2 33.0	0.001	3.0	NA	0.0	0.0	0.00	0.29	0.00	55.4
North: Lindesay Hwy Service Road													
8	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	314 33.0	314 33.0	0.204	5.9	LOS A	1.1	10.0	0.03	0.59	0.03	51.1
Appro	ach		315 33.0	315 33.0	0.204	5.8	NA	1.1	10.0	0.03	0.59	0.03	51.2
West: Site Access													
10	L2	All MCs	469 33.0	469 33.0	0.335	5.9	LOS A	1.9	16.9	0.02	0.56	0.02	51.5
Appro	ach		469 33.0	469 33.0	0.335	5.9	LOS A	1.9	16.9	0.02	0.56	0.02	51.5
All Ve	hicles		786 33.0	786 33.0	0.335	5.9	NA	1.9	16.9	0.02	0.57	0.02	51.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 26 July 2023 4:12:23 PM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 1\P5332.002M_ Intersection 3.sip9

V Site: 101 [2034 AM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance													
Mov ID	Turn	Mov Class		Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Lindesay Hwy Service Road													
1	L2	All MCs	1 33.0	1 33.0	0.049	5.9	LOS A	0.0	0.0	0.00	0.01	0.00	55.8
2	T1	All MCs	77 33.0	77 33.0	0.049	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
Appro	ach		78 33.0	78 33.0	0.049	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
North: Lindesay Hwy Service Road													
8	T1	All MCs	77 33.0	77 33.0	0.048	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	548 33.0	548 33.0	0.390	6.4	LOS A	2.5	22.5	0.29	0.56	0.29	50.5
Appro	ach		625 33.0	625 33.0	0.390	5.6	NA	2.5	22.5	0.26	0.49	0.26	51.5
West: Site Access													
10	L2	All MCs	235 33.0	235 33.0	0.183	6.4	LOS A	0.8	7.5	0.22	0.55	0.22	50.9
Approach		235 33.0	235 33.0	0.183	6.4	LOS A	0.8	7.5	0.22	0.55	0.22	50.9	
All Ve	hicles		938 33.0	938 33.0	0.390	5.4	NA	2.5	22.5	0.23	0.47	0.23	51.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 26 July 2023 4:12:23 PM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 1\P5332.002M_ Intersection 3.sip9

V Site: 101 [2034 PM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance													
Mov ID	Turn	Mov Class	Demand Flows [Total HV] [veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Lindesay Hwy Service Road													
1	L2	All MCs	1 33.0	1 33.0	0.049	5.9	LOS A	0.0	0.0	0.00	0.01	0.00	55.8
2	T1	All MCs	77 33.0	77 33.0	0.049	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
Appro	ach		78 33.0	78 33.0	0.049	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
North: Lindesay Hwy Service Road													
8	T1	All MCs	77 33.0	77 33.0	0.048	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	314 33.0	314 33.0	0.223	6.3	LOS A	1.2	10.7	0.25	0.57	0.25	50.6
Appro	ach		391 33.0	391 33.0	0.223	5.1	NA	1.2	10.7	0.20	0.45	0.20	52.2
West: Site Access													
10	L2	All MCs	469 33.0	469 33.0	0.366	6.5	LOS A	2.0	18.3	0.27	0.54	0.27	50.8
Appro	ach		469 33.0	469 33.0	0.366	6.5	LOS A	2.0	18.3	0.27	0.54	0.27	50.8
All Ve	hicles		938 33.0	938 33.0	0.366	5.4	NA	2.0	18.3	0.22	0.46	0.22	52.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

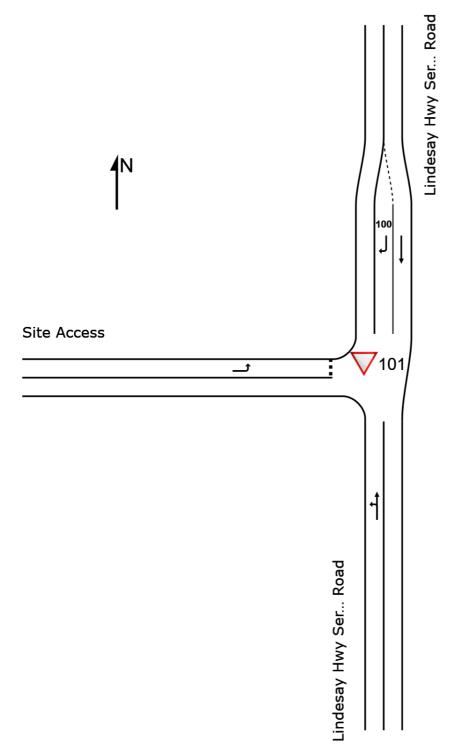
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 26 July 2023 4:12:23 PM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 1\P5332.002M_ Intersection 3.sip9

SITE LAYOUT V Site: 101 [2026 AM BG + DEV (Site Folder: General)]

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Monday, 31 July 2023 8:49:30 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 2\P5332.002M_ Intersection 3.sip9

V Site: 101 [2026 AM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehio	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.165	6.0	LOS A	0.0	0.0	0.00	0.00	0.00	55.8
2	T1	All MCs	264 33.0	264 33.0	0.165	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach		265 33.0	265 33.0	0.165	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.9
North	: Linde	esay Hwy	Service Roa	ıd									
8	T1	All MCs	616 33.0	616 33.0	0.384	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
9	R2	All MCs	548 33.0	548 33.0	0.507	9.3	LOS A	4.4	39.6	0.59	0.76	0.78	48.9
Appro	ach		1164 33.0	1164 33.0	0.507	4.4	NA	4.4	39.6	0.28	0.36	0.37	54.1
West:	Site A	Access											
10	L2	All MCs	235 33.0	235 33.0	0.236	7.8	LOS A	1.0	9.2	0.45	0.65	0.45	50.2
Appro	ach		235 33.0	235 33.0	0.236	7.8	LOS A	1.0	9.2	0.45	0.65	0.45	50.2
All Ve	hicles		1664 33.0	1664 33.0	0.507	4.2	NA	4.4	39.6	0.26	0.34	0.32	54.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 26 July 2023 4:17:14 PM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 2\P5332.002M_ Intersection 3.sip9

V Site: 101 [2026 PM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehio	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.329	6.0	LOS A	0.0	0.0	0.00	0.00	0.00	55.7
2	T1	All MCs	527 33.0	527 33.0	0.329	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Appro	ach		528 33.0	528 33.0	0.329	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.7
North	Linde	esay Hwy	Service Roa	ıd									
8	T1	All MCs	352 33.0	352 33.0	0.219	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
9	R2	All MCs	314 33.0	314 33.0	0.468	13.0	LOS A	2.8	25.5	0.71	0.99	1.06	46.6
Appro	ach		665 33.0	665 33.0	0.468	6.1	NA	2.8	25.5	0.33	0.47	0.50	52.7
West:	Site A	ccess											
10	L2	All MCs	469 33.0	469 33.0	0.752	17.9	LOS B	6.9	61.8	0.82	1.32	1.93	44.1
Appro	ach		469 33.0	469 33.0	0.752	17.9	LOS B	6.9	61.8	0.82	1.32	1.93	44.1
All Ve	hicles		1663 33.0	1663 33.0	0.752	7.6	NA	6.9	61.8	0.37	0.56	0.74	51.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 26 July 2023 4:17:14 PM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 2\P5332.002M_ Intersection 3.sip9

V Site: 101 [2036 AM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehio	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.212	6.0	LOS A	0.0	0.0	0.00	0.00	0.00	55.8
2	T1	All MCs	340 33.0	340 33.0	0.212	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach		341 33.0	341 33.0	0.212	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
North	Linde	esay Hwy	Service Roa	ıd									
8	T1	All MCs	692 33.0	692 33.0	0.431	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.6
9	R2	All MCs	548 33.0	548 33.0	0.573	11.1	LOS A	5.4	48.3	0.68	0.90	1.06	47.7
Appro	ach		1240 33.0	1240 33.0	0.573	5.0	NA	5.4	48.3	0.30	0.40	0.47	53.7
West:	Site A	ccess											
10	L2	All MCs	235 33.0	235 33.0	0.266	8.5	LOS A	1.1	10.2	0.52	0.71	0.52	49.7
Appro	ach		235 33.0	235 33.0	0.266	8.5	LOS A	1.1	10.2	0.52	0.71	0.52	49.7
All Ve	hicles		1816 33.0	1816 33.0	0.573	4.5	NA	5.4	48.3	0.27	0.36	0.39	54.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 26 July 2023 4:17:15 PM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 2\P5332.002M_ Intersection 3.sip9

V Site: 101 [2036 PM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class		Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.377	6.0	LOS A	0.0	0.0	0.00	0.00	0.00	55.7
2	T1	All MCs	604 33.0	604 33.0	0.377	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Appro	bach		605 33.0	605 33.0	0.377	0.2	NA	0.0	0.0	0.00	0.00	0.00	59.7
North	: Linde	esay Hwy	Service Roa	ıd									
8	T1	All MCs	428 33.0	428 33.0	0.267	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
9	R2	All MCs	314 33.0	314 33.0	0.556	15.9	LOS B	3.5	31.1	0.78	1.10	1.32	44.9
Appro	bach		742 33.0	742 33.0	0.556	6.8	NA	3.5	31.1	0.33	0.47	0.56	52.4
West	Site A	Access											
10	L2	All MCs	469 33.0	469 33.0	0.890	28.8	LOS C	11.0	98.6	0.93	1.78	3.33	39.0
Appro	bach		469 33.0	469 33.0	0.890	28.8	LOS C	11.0	98.6	0.93	1.78	3.33	39.0
All Ve	hicles		1817 33.0	1817 33.0	0.890	10.3	NA	11.0	98.6	0.37	0.65	1.09	50.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

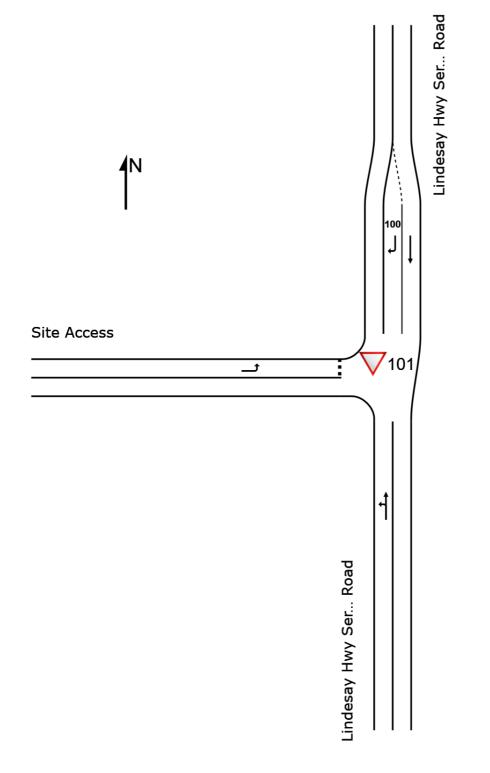
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 26 July 2023 4:17:15 PM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 2\P5332.002M_ Intersection 3.sip9

SITE LAYOUT

▽ Site: 101 [2029 AM BG + DEV - No Right (Site Folder: General)]

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Monday, 31 July 2023 8:54:46 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\P5332.002M_ Intersection 3.sip9

V Site: 101 [2029 AM BG + DEV - No Right (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehic	le Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.143	6.0	LOS A	0.0	0.0	0.00	0.00	0.00	55.8
2	T1	All MCs	228 33.0	228 33.0	0.143	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach		229 33.0	229 33.0	0.143	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.9
North:	Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	534 33.0	534 33.0	0.332	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
9	R2	All MCs	534 33.0	534 33.0	0.468	8.4	LOS A	3.7	33.1	0.54	0.70	0.64	49.4
Appro	ach		1067 33.0	1067 33.0	0.468	4.3	NA	3.7	33.1	0.27	0.35	0.32	54.1
West:	Site A	Access											
10	L2	All MCs	228 33.0	228 33.0	0.218	7.4	LOS A	1.0	8.6	0.41	0.63	0.41	50.4
Appro	ach		228 33.0	228 33.0	0.218	7.4	LOS A	1.0	8.6	0.41	0.63	0.41	50.4
All Ve	hicles		1525 33.0	1525 33.0	0.468	4.1	NA	3.7	33.1	0.25	0.34	0.29	54.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Monday, 17 July 2023 10:49:10 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\P5332.002M_ Intersection 3.sip9

V Site: 101 [2029 PM BG + DEV - No Right (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehic	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.286	6.0	LOS A	0.0	0.0	0.00	0.00	0.00	55.7
2	T1	All MCs	458 33.0	458 33.0	0.286	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
Appro	ach		459 33.0	459 33.0	0.286	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
North	Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	305 33.0	305 33.0	0.190	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
9	R2	All MCs	305 33.0	305 33.0	0.395	11.0	LOS A	2.3	20.7	0.66	0.88	0.86	47.8
Appro	ach		611 33.0	611 33.0	0.395	5.5	NA	2.3	20.7	0.33	0.44	0.43	53.1
West:	Site A	Access											
10	L2	All MCs	458 33.0	458 33.0	0.638	13.9	LOS A	5.1	46.2	0.73	1.10	1.36	46.4
Appro	ach		458 33.0	458 33.0	0.638	13.9	LOS A	5.1	46.2	0.73	1.10	1.36	46.4
All Ve	hicles		1527 33.0	1527 33.0	0.638	6.4	NA	5.1	46.2	0.35	0.51	0.58	52.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Monday, 17 July 2023 10:49:11 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\P5332.002M_ Intersection 3.sip9

V Site: 101 [2039 AM BG + DEV - No Right (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehic	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.191	6.0	LOS A	0.0	0.0	0.00	0.00	0.00	55.8
2	T1	All MCs	305 33.0	305 33.0	0.191	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach		306 33.0	306 33.0	0.191	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.9
North:	Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	611 33.0	611 33.0	0.380	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
9	R2	All MCs	534 33.0	534 33.0	0.527	10.0	LOS A	4.6	41.7	0.63	0.83	0.90	48.4
Appro	ach		1144 33.0	1144 33.0	0.527	4.8	NA	4.6	41.7	0.30	0.39	0.42	53.8
West:	Site A	Access											
10	L2	All MCs	228 33.0	228 33.0	0.245	8.1	LOS A	1.0	9.4	0.48	0.68	0.48	50.0
Appro	ach		228 33.0	228 33.0	0.245	8.1	LOS A	1.0	9.4	0.48	0.68	0.48	50.0
All Ve	hicles		1679 33.0	1679 33.0	0.527	4.4	NA	4.6	41.7	0.27	0.36	0.35	54.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Monday, 17 July 2023 10:49:11 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\P5332.002M_ Intersection 3.sip9

V Site: 101 [2039 PM BG + DEV - No Right (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehic	cle Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.334	6.0	LOS A	0.0	0.0	0.00	0.00	0.00	55.7
2	T1	All MCs	535 33.0	535 33.0	0.334	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.7
Appro	ach		536 33.0	536 33.0	0.334	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.7
North:	: Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	382 33.0	382 33.0	0.238	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
9	R2	All MCs	305 33.0	305 33.0	0.462	13.0	LOS A	2.8	24.8	0.71	0.99	1.05	46.5
Appro	ach		687 33.0	687 33.0	0.462	5.8	NA	2.8	24.8	0.31	0.44	0.47	53.1
West:	Site A	Access											
10	L2	All MCs	458 33.0	458 33.0	0.744	17.9	LOS B	6.6	59.4	0.82	1.31	1.90	44.1
Appro	ach		458 33.0	458 33.0	0.744	17.9	LOS B	6.6	59.4	0.82	1.31	1.90	44.1
All Ve	hicles		1681 33.0	1681 33.0	0.744	7.3	NA	6.6	59.4	0.35	0.54	0.71	52.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

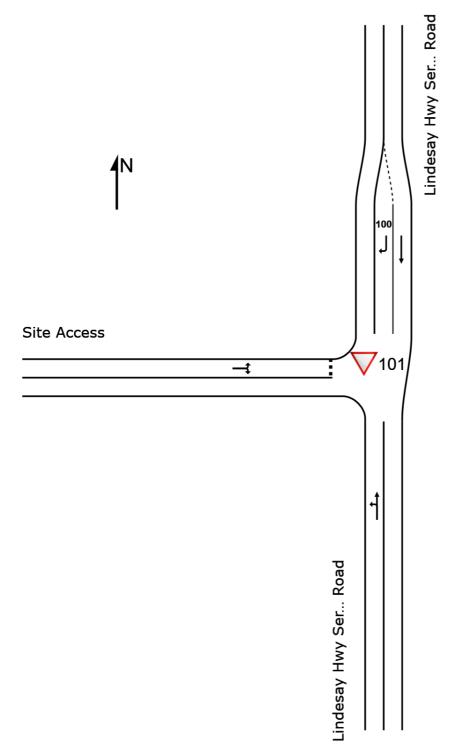
Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Monday, 17 July 2023 10:49:12 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\P5332.002M_ Intersection 3.sip9

SITE LAYOUT V Site: 101 [2026 AM BG + DEV (Site Folder: General)]

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

V Site: 101 [2026 AM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	ovemen	t Performar	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	/ Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.001	5.9	LOS A	0.0	0.0	0.00	0.29	0.00	53.6
2	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.29	0.00	57.4
Appro	bach		2 33.0	2 33.0	0.001	3.0	NA	0.0	0.0	0.00	0.29	0.00	55.4
North	: Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	616 33.0	616 33.0	0.400	5.9	LOS A	2.8	24.9	0.04	0.59	0.04	51.1
Appro	bach		617 33.0	617 33.0	0.400	5.8	NA	2.8	24.9	0.04	0.59	0.04	51.1
West	Site A	Access											
10	L2	All MCs	264 33.0	264 33.0	0.192	5.9	LOS A	0.9	8.2	0.02	0.56	0.02	51.5
12	R2	All MCs	1 33.0	1 33.0	0.192	6.7	LOS A	0.9	8.2	0.02	0.56	0.02	51.1
Appro	bach		265 33.0	265 33.0	0.192	5.9	LOS A	0.9	8.2	0.02	0.56	0.02	51.5
All Ve	hicles		884 33.0	884 33.0	0.400	5.9	NA	2.8	24.9	0.03	0.58	0.03	51.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 5 July 2023 11:50:05 AM

V Site: 101 [2026 PM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	ovement	t Performan	ice									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] [veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	/ Service Roa	d									
1	L2	All MCs	1 33.0	1 33.0	0.001	5.9	LOS A	0.0	0.0	0.00	0.29	0.00	53.6
2	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.29	0.00	57.4
Appro	bach		2 33.0	2 33.0	0.001	3.0	NA	0.0	0.0	0.00	0.29	0.00	55.4
North	: Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	352 33.0	352 33.0	0.228	5.9	LOS A	1.3	11.5	0.03	0.59	0.03	51.1
Appro	bach		353 33.0	353 33.0	0.228	5.8	NA	1.3	11.5	0.03	0.59	0.03	51.2
West:	Site A	ccess											
10	L2	All MCs	527 33.0	527 33.0	0.378	5.9	LOS A	2.3	20.3	0.02	0.56	0.02	51.5
12	R2	All MCs	1 33.0	1 33.0	0.378	6.9	LOS A	2.3	20.3	0.02	0.56	0.02	51.1
Appro	bach		528 33.0	528 33.0	0.378	5.9	LOS A	2.3	20.3	0.02	0.56	0.02	51.5
All Ve	hicles		883 33.0	883 33.0	0.378	5.9	NA	2.3	20.3	0.02	0.57	0.02	51.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 5 July 2023 11:50:07 AM

V Site: 101 [2036 AM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehio	cle M	ovement	Performa	nce									
Mov ID	Turn	Mov Class		Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.049	5.9	LOS A	0.0	0.0	0.00	0.01	0.00	55.8
2	T1	All MCs	77 33.0	77 33.0	0.049	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
Appro	bach		78 33.0	78 33.0	0.049	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
North	: Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	77 33.0	77 33.0	0.048	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	616 33.0	616 33.0	0.438	6.5	LOS A	3.0	26.8	0.31	0.56	0.31	50.4
Appro	bach		693 33.0	693 33.0	0.438	5.8	NA	3.0	26.8	0.28	0.50	0.28	51.3
West:	Site A	Access											
10	L2	All MCs	264 33.0	264 33.0	0.211	6.4	LOS A	1.0	8.8	0.23	0.55	0.23	50.9
12	R2	All MCs	1 33.0	1 33.0	0.211	27.5	LOS B	1.0	8.8	0.23	0.55	0.23	50.5
Appro	bach		265 33.0	265 33.0	0.211	6.5	LOS A	1.0	8.8	0.23	0.55	0.23	50.9
All Ve	hicles		1036 33.0	1036 33.0	0.438	5.5	NA	3.0	26.8	0.24	0.47	0.24	51.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Wednesday, 5 July 2023 11:50:07 AM

V Site: 101 [2036 PM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	/ Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.049	5.9	LOS A	0.0	0.0	0.00	0.01	0.00	55.8
2	T1	All MCs	77 33.0	77 33.0	0.049	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
Appro	bach		78 33.0	78 33.0	0.049	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
North	: Linde	esay Hwy	Service Roa	ıd									
8	T1	All MCs	77 33.0	77 33.0	0.048	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	352 33.0	352 33.0	0.250	6.3	LOS A	1.4	12.3	0.25	0.57	0.25	50.6
Appro	bach		428 33.0	428 33.0	0.250	5.2	NA	1.4	12.3	0.21	0.46	0.21	52.0
West	Site A	Access											
10	L2	All MCs	527 33.0	527 33.0	0.414	6.5	LOS A	2.4	21.9	0.28	0.54	0.28	50.7
12	R2	All MCs	1 33.0	1 33.0	0.414	17.5	LOS B	2.4	21.9	0.28	0.54	0.28	50.4
Appro	bach		528 33.0	528 33.0	0.414	6.5	LOS A	2.4	21.9	0.28	0.54	0.28	50.7
All Ve	hicles		1035 33.0	1035 33.0	0.414	5.5	NA	2.4	21.9	0.23	0.47	0.23	51.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

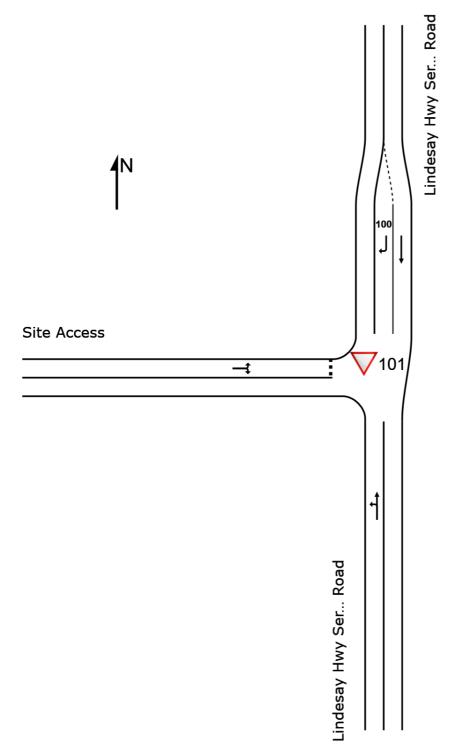
Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.


SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Monday, 17 July 2023 10:45:10 AM

SITE LAYOUT V Site: 101 [2029 AM BG + DEV (Site Folder: General)]

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Monday, 31 July 2023 8:55:56 AM Project: P:\P5708 North Maclean Industrial Estate TES\Technical\Models\SIDRA\005_TIA V1\Stage 3\P5332.002M_Intersection 4.sip9

V Site: 101 [2029 AM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance													
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	/ Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.001	5.9	LOS A	0.0	0.0	0.00	0.29	0.00	53.6
2	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.29	0.00	57.4
Appro	ach		2 33.0	2 33.0	0.001	3.0	NA	0.0	0.0	0.00	0.29	0.00	55.4
North	: Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	534 33.0	534 33.0	0.346	5.9	LOS A	2.2	20.1	0.03	0.59	0.03	51.1
Appro	bach		535 33.0	535 33.0	0.346	5.8	NA	2.2	20.1	0.03	0.59	0.03	51.1
West:	Site A	Access											
10	L2	All MCs	228 33.0	228 33.0	0.166	5.9	LOS A	0.8	6.8	0.02	0.56	0.02	51.5
12	R2	All MCs	1 33.0	1 33.0	0.166	6.5	LOS A	0.8	6.8	0.02	0.56	0.02	51.1
Appro	bach		229 33.0	229 33.0	0.166	5.9	LOS A	0.8	6.8	0.02	0.56	0.02	51.5
All Ve	hicles		766 33.0	766 33.0	0.346	5.9	NA	2.2	20.1	0.03	0.58	0.03	51.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Monday, 17 July 2023 10:59:14 AM

V Site: 101 [2029 PM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance													
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	South: Lindesay Hwy Service Road												
1	L2	All MCs	1 33.0	1 33.0	0.001	5.9	LOS A	0.0	0.0	0.00	0.29	0.00	53.6
2	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.29	0.00	57.4
Appro	ach		2 33.0	2 33.0	0.001	3.0	NA	0.0	0.0	0.00	0.29	0.00	55.4
North	: Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	1 33.0	1 33.0	0.001	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	305 33.0	305 33.0	0.198	5.9	LOS A	1.1	9.6	0.03	0.59	0.03	51.1
Appro	bach		306 33.0	306 33.0	0.198	5.8	NA	1.1	9.6	0.03	0.59	0.03	51.2
West:	Site A	Access											
10	L2	All MCs	458 33.0	458 33.0	0.328	5.9	LOS A	1.8	16.4	0.02	0.56	0.02	51.5
12	R2	All MCs	1 33.0	1 33.0	0.328	6.7	LOS A	1.8	16.4	0.02	0.56	0.02	51.1
Appro	bach		459 33.0	459 33.0	0.328	5.9	LOS A	1.8	16.4	0.02	0.56	0.02	51.5
All Ve	hicles		767 33.0	767 33.0	0.328	5.9	NA	1.8	16.4	0.02	0.57	0.02	51.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Monday, 17 July 2023 10:59:15 AM

V Site: 101 [2039 AM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance													
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	/ Service Roa	ad									
1	L2	All MCs	1 33.0	1 33.0	0.049	5.9	LOS A	0.0	0.0	0.00	0.01	0.00	55.8
2	T1	All MCs	77 33.0	77 33.0	0.049	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
Appro	ach		78 33.0	78 33.0	0.049	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
North	: Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	77 33.0	77 33.0	0.048	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	534 33.0	534 33.0	0.380	6.4	LOS A	2.4	21.6	0.29	0.56	0.29	50.5
Appro	ach		611 33.0	611 33.0	0.380	5.6	NA	2.4	21.6	0.25	0.49	0.25	51.5
West:	Site A	Access											
10	L2	All MCs	228 33.0	228 33.0	0.182	6.4	LOS A	0.8	7.4	0.22	0.55	0.22	50.9
12	R2	All MCs	1 33.0	1 33.0	0.182	21.6	LOS B	0.8	7.4	0.22	0.55	0.22	50.5
Appro	ach		229 33.0	229 33.0	0.182	6.4	LOS A	0.8	7.4	0.22	0.55	0.22	50.9
All Ve	hicles		918 33.0	918 33.0	0.380	5.4	NA	2.4	21.6	0.22	0.46	0.22	52.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Monday, 17 July 2023 10:59:15 AM

V Site: 101 [2039 PM BG + DEV (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

P5708 North Maclean Industrial Estate Prepared by FJ & ME Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance													
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Lind	esay Hwy	/ Service Roa	ıd									
1	L2	All MCs	1 33.0	1 33.0	0.049	5.9	LOS A	0.0	0.0	0.00	0.01	0.00	55.8
2	T1	All MCs	77 33.0	77 33.0	0.049	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
Appro	ach		78 33.0	78 33.0	0.049	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
North	: Linde	esay Hwy	Service Roa	d									
8	T1	All MCs	77 33.0	77 33.0	0.048	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	All MCs	305 33.0	305 33.0	0.217	6.3	LOS A	1.2	10.4	0.24	0.57	0.24	50.6
Appro	ach		382 33.0	382 33.0	0.217	5.0	NA	1.2	10.4	0.19	0.45	0.19	52.2
West:	Site A	Access											
10	L2	All MCs	458 33.0	458 33.0	0.359	6.5	LOS A	2.0	17.8	0.27	0.54	0.27	50.8
12	R2	All MCs	1 33.0	1 33.0	0.359	15.0	LOS B	2.0	17.8	0.27	0.54	0.27	50.4
Appro	ach		459 33.0	459 33.0	0.359	6.5	LOS A	2.0	17.8	0.27	0.54	0.27	50.8
All Ve	hicles		919 33.0	919 33.0	0.359	5.4	NA	2.0	17.8	0.21	0.46	0.21	52.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

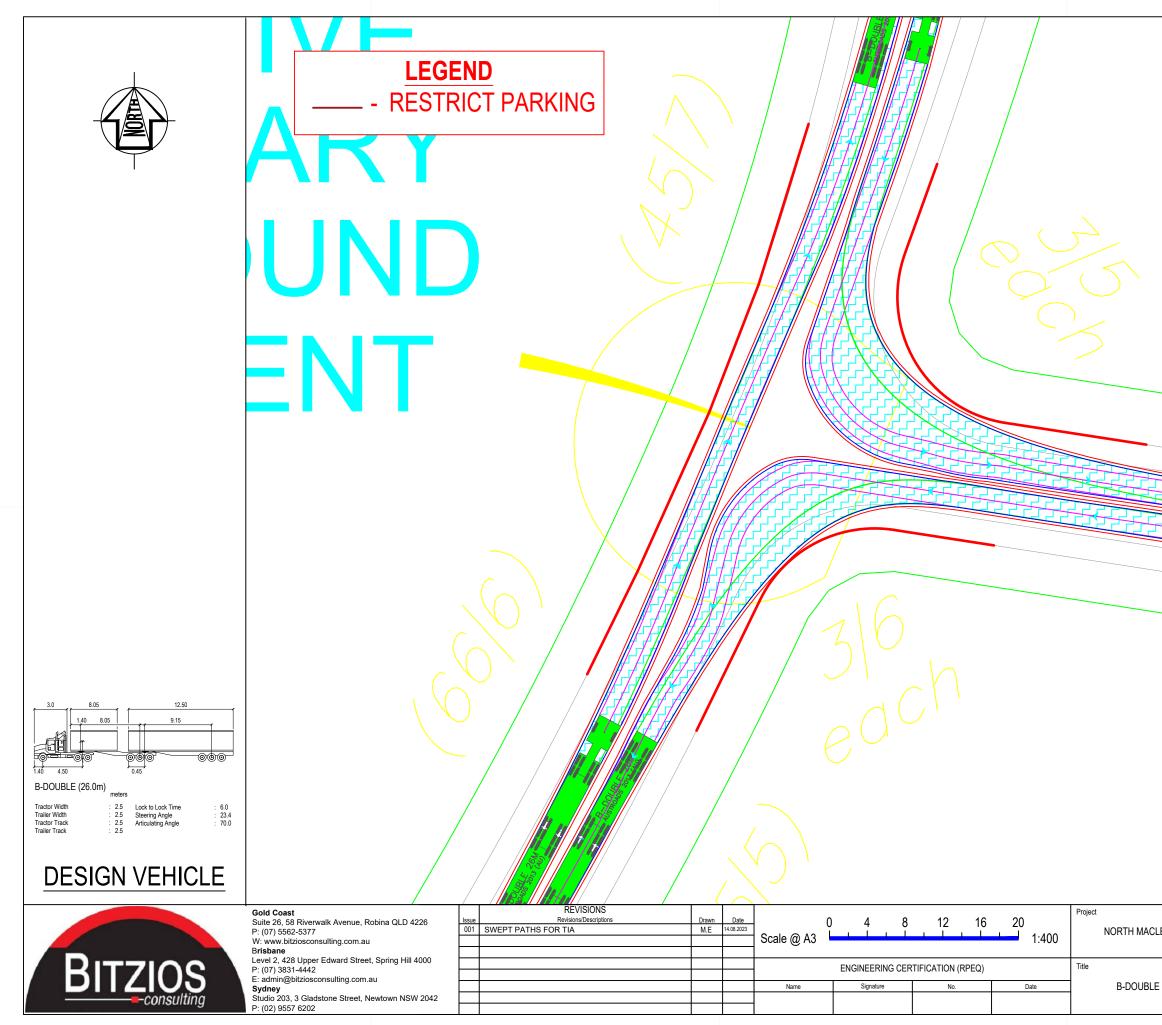
Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

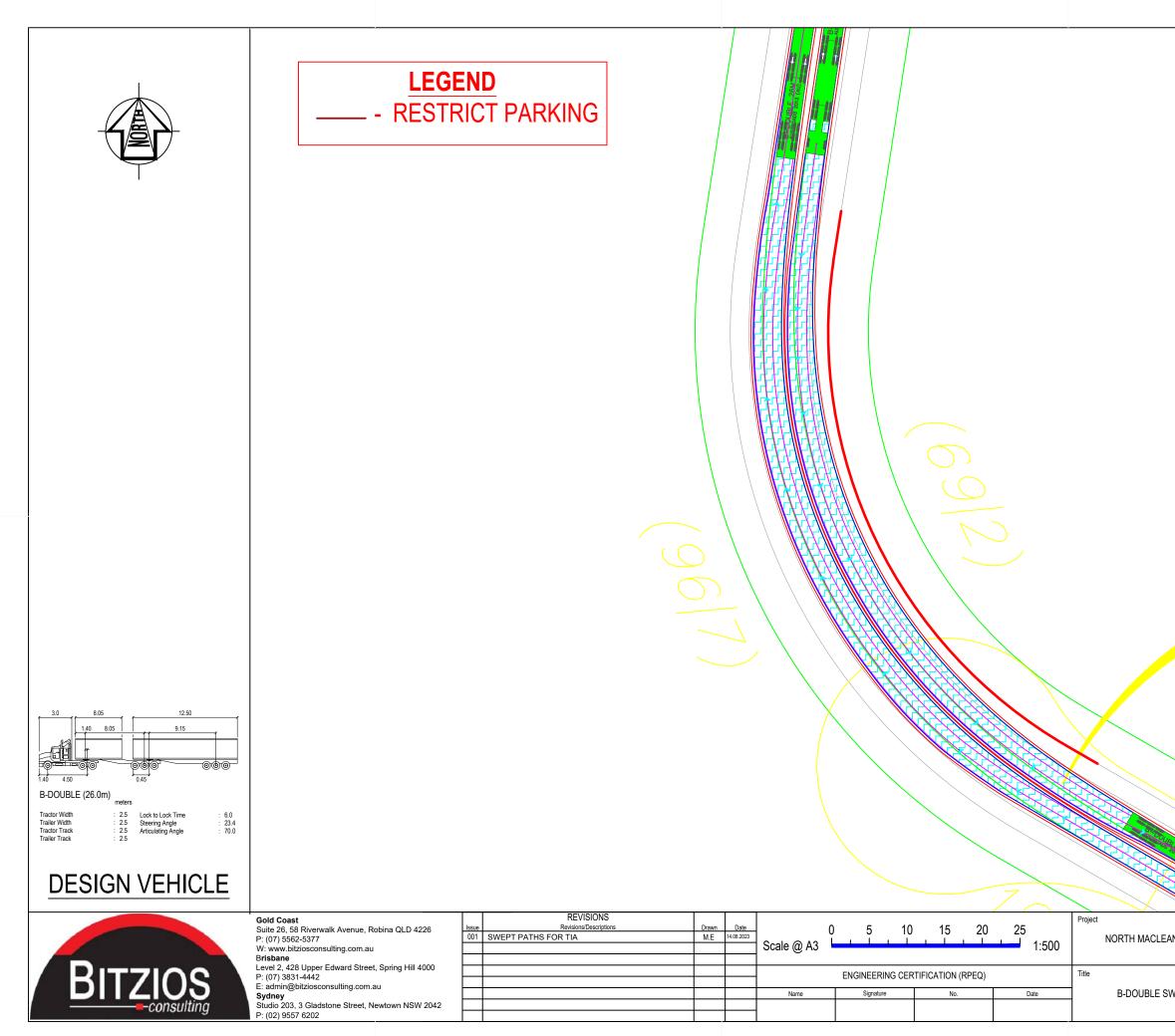
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.


Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Monday, 17 July 2023 10:59:15 AM

Appendix D: Swept Path Diagrams

DURLE 26M		
ADS 2013 (AU)		
		Checked M.D
Design M.E	Drawn	Checked
Design M.E	Drawn M.E	Checked M.D Date

	ΓE	N	
		45	
EAN INDUSTRIAL TIA	Design M.E	Drawn M.E	Checked M.D
SWEPT PATHS #2	CONCEF Project Number P5708	PT ONLY Sheet Number 2	Date 14.08.2023 Issue 001