

PLANS AND DOCUMENTS referred to in the PDA DEVELOPMENT APPROVAL

Approval no:DEV2020/1099Date:9 December 2020

Groundwater Assessment Oxley PDA - Stage 1A Blackheath Road, Oxley

Prepared for **Economic Development Queensland**

Project No.: 018-118D 15 September 2020

Butler Pariners Pty Ltd ABN 14 816 574 868 22 Corunna Street Albion, Queensland 4010 P.O. Box 2267 Fortitude Valley BC Queensland 4006

Ph: 61 7 **3256 2900** Fx: 61 7 3256 2901 enquiries@bullerparlners.com.au

Groundwater Assessment Oxley PDA - Stage 1A Blackheath Road, Oxley Project No.: 018-118D 15 September 2020

TABLE OF CONTENTS

SECTION 1II	ITRODUCTION	3
1	1 Project	3
1	2 Scope of Work	4
1	3 Technical Framework	4
1	4 Commission	4
SECTION 2E	ACKGROUND	
2		5
	2 Site Description	
	3 Geology	
	4 Hydrology	
	5 Rainfall	
2		
2		
		. 9
SECTION 3F	ELDWORK	10
3		
	3.1.1 Drilling and Sampling Methods	
	3.1.2 Construction Details of the Monitoring Wells	10
3	2 Insitu Hydraulic Testing	10
SECTION 4	ESULTS OF INVESTIGATIONS	11
4		
4		
	4.2.1 Spot Observations	
	4.2.2 Historic Observations – Water Level Fluctuation	
	4.2.3 Continuous Monitoring Groundwater Levels	
4	3 Insitu Hydraulic Testing	
	4.3.1 Slug Test - Bouwer-Rice Method	
	4.3.2 Insitu Test Results	
4.		
		21
5.		
5.	5, , , , , , , , , , , , , , , , , , ,	
5.	3 Groundwater Flow, Recharge and Discharge	22
SECTION 6N	UMERICAL MODEL	23
6.	1 Model Objective and Complexity Level	23
6.	2 Model Code	23
6.	3 Model Grid	23
6.	4 Boundary Conditions	24
	6.4.1 Constant Head Boundaries	
	6.4.2 No-flow Boundaries	
	6.4.3 Rainfall Recharge and Evapotranspiration	25
6.	5 Model Calibration	25
	6.5.1 Calibration Methods and Data	
	6.5.2 Calibrated Parameter Values	
	6.5.3 Comparison of Measured and Modelled Water Levels	
6.		
6.		
	6.7.1 Water Table and Aquifer Saturation	
	6.7.2 Water Level Fluctuation	
	6.7.3 Predictive Uncertainty	30

Important Information about your Geotechnical Report (2 pages)

Brisbane • Gladstone • Gold Coast • Moranbah • Rockhampton • Sydney • Yeppoon

TABLES:

Table 1:	Statistics of Rainfall at the Oxley Weather Station between 1971 and 20209
Table 2:	Summary of Registered Groundwater Bore Information
Table 3:	Summary of Onsite Monitoring Well Construction Details
Table 4:	Observed Groundwater Levels on 31 July 2020 12
Table 5:	Observed Groundwater Levels in Existing Wells between September 2018 and July 202012
Table 6:	Results of Interpreted Insitu Hydraulic Tests
Table 7:	Statistics of Interpreted K Values for Each Aquifer
Table 8:	Summary of Particle Size Distribution Test Results
Table 9:	Results of Calibrated K Values
Table 10:	Comparison of Observed and Calculated Water Levels

DRAWINGS:

Drawing No. 1 Rev A	Gro
---------------------	-----

Groundwater Monitoring Well Locations

APPENDICES:

Appendix A	Current Bore Report Sheets with Explanatory Notes
Appendix B	Previous Bore Report Sheets
Appendix C	Hydraulic Testing Processing Sheets
Appendix D	Results of Particle Size Distribution Analysis

Copyright 2020

© Butler Partners 2020

This report is subject to copyright. Except as permitted under the Copyright Act 1968, no part of it may in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) be reproduced, stored in a retrieval system or transmitted without prior written permission. Enquiries should be addressed to the publishers.

BUTLER PARTNERS PTY LTD

www.butlerpartners.com.au

SECTION 1 INTRODUCTION

1.1 Project

It is understood that Economic Development Queensland (EDQ) is proposing to develop Stage 1A of the Oxley PDA site (part of the former Oxley Secondary College), by the construction of a residential subdivision comprising forty-one new residential allotments and open space areas. The location and extent of the Stage 1A site are indicated in Figure 1 and attached Drawing No. 1.

Figure 1: Oxley PDA Stage 1A Location and Extent

As input to the design and DA/EDQ approval processes for the Stage 1A portion of the overall Oxley Parkside development area, slope stability assessment of the Stage 1A site was required, considering relevant slope stability comments from the following two EDQ provided documents:

- Department of State Development, Manufacturing, Infrastructure and Planning's letter to EDQ of 23 April 2020 (Ref DEV2020/1099); and
- Appendix A of EDQ's submitted reports review.

A groundwater assessment of the site was required to be undertaken to provide an assessment of the maximum likely groundwater level at the Stage 1A site, as input to the geotechnical assessment of slope stability.

1.2 Scope of Work

The scope of work in relation to the groundwater assessment comprised the following:

- review of existing site subsurface information;
- installation of four groundwater monitoring wells;
- laboratory testing of selected samples;
- monitoring of the groundwater levels;
- performing insitu hydraulic tests;
- groundwater modelling to provide estimates of potential groundwater level changes; and
- preparation of a report summarising the laboratory test results, the groundwater model and estimates
 of potential groundwater level changes in the sloping sections of Stage 1A, resulting from various
 rainfall scenarios.

1.3 <u>Technical Framework</u>

The following references were used as part of the groundwater assessment:

- Middlemis H. (2001): Groundwater Flow Modelling Guideline, Murray-Darling Basin Commission;
- SKM and NCGRT (2012): Australia Groundwater Modelling Guidelines;
- Kruseman G.P. and de Ridder N.A. (1994) Analysis and Evaluation of Pumping Test Data;
- Freeze R.A. and Cherry, J.A. (1979) Groundwater. Prentice-Hall Inc. Englewood Cliffs, N.J. 604p; and
- McDonald M.G. and Harbaugh, A.W. (1988). A modular three-dimensional finite-difference groundwater flow model. USGS Techniques of Water Resources Investigations, Book 6, Chapter A1. Washington DC.

1.4 <u>Commission</u>

Based on the proposed development and anticipated subsurface conditions, a fee to undertake a groundwater assessment of the Stage 1A site (in conjunction with a geotechnical investigation), was presented in a proposal of 22 May 2020. Butler Partners Pty Ltd (Butler Partners) was subsequently commissioned by EDQ to conduct the groundwater assessment (following the geotechnical investigation), as proposed, which has been conducted in consultation with EDQ. This report was first issued in draft for comment on 24 August 2020.

The geotechnical investigation results are reported separately (refer Section 2.1).

SECTION 2 BACKGROUND

2.1 <u>Previous Investigations</u>

Butler Partners has previously undertaken a preliminary geotechnical investigation (in conjunction with a preliminary contamination assessment), of the overall Oxley Parkside development site; a broadscale slope stability assessment; a subsequent slope stability assessment of the eastern site slopes (below Blackheath Road); and a slope stability assessment of the Stage 1A section of the site, and the results are contained in the following reports:

Preliminary Geotechnical Investigation Former Oxley Secondary College Blackheath Road, Oxley Project No.: 018-118A, Dated: 16 May 2018

Broadscale Slope Stability Assessment Former Oxley Secondary College Blackheath Road, Oxley Project No.: 018-118B, Dated: 31 October 2018

Additional Slope Stability Assessment Former Oxley Secondary College Blackheath Road, Oxley Project No.: 018-118B, Dated 26 August 2019

Geotechnical Investigation and Slope Stability Assessment Oxley Parkside Development – Stage 1A Blackheath Road, Oxley Project No.: 018-118D, Dated 10 July 2020

Relevant Bore Report sheets from the 26 August 2019 report are included herein in Appendix B and relevant factual laboratory test data are also included herein. Six groundwater monitoring wells (Wells 21, 25 to 29), were installed, sampled and hydraulically tested during the previous investigations, and relevant results are also included herein.

Relevant Bore Report sheets from the 10 July 2020 report are included herein in Appendix A and relevant factual laboratory test data are also included herein.

2.2 Site Description

The Stage 1A site is located close to, and to the north of, Seventeen Mile Rocks Road, close to its intersection with Blackheath Road. At the time of the investigation, the site was undeveloped and contained a moderate cover of medium to tall trees, with long and mown grass undergrowth. The southern portion of the site comprised (apparently) natural slopes (but with some fill zones), with overall slope angles generally downwards to the north, varying between 5° and 10° and up to 20° in localised areas. The ground surface level across the site is highly variable and non-uniform and varied at the bore locations between RL32.0m (Bore 105) and RL48.5m (Bore 100).

An aerial view of the overall Oxley Parkside site taken on 4 November 2018 is given in Photograph 1, and an aerial view of the Stage 1A site taken on 25 May 2020 is given in Photograph 2. A view of a section of the Stage 1A site, taken at the time of the investigation, is given in Photograph 3.

Photograph 1: An aerial view of the overall Oxley Parkside site on 4 November 2018. Source: NearMap

Photograph 2: Stage 1A portion of the Oxley Parkside site on 25 May 2020. Source: NearMap

Several of the existing (off-site) properties located along the southern boundary of the site (along Seventeen Mile Rocks Road), appear to have had fill placed along some sections of their rear (northern) boundaries to 'level' the sites. Concentrated surface water flow zones also emanate from several of the properties.

Photograph 3: View of the site looking north-east from Bore 102

2.3 <u>Geology</u>

The surface geology presented on Queensland Globe (<u>https://qldglobe.information.qld.gov.au/</u>) is shown in Figure 2, which also includes the locations of registered groundwater monitoring wells in the vicinity of the site. The geological units are separated by the doted lines. The area of lower elevation in the northern portion of the site (the light-green coloured area) is Quaternary sediments - Holocene Alluvium (mapped as Qha/2), consisting of gravel, sand, silt and clay. The rest of the site is mapped as Tertiary sedimentary rocks with the eastern slope area being the Corinda Formation (noted as '*Toc*' on the map), comprising mudstone, shale, minor sandstone and limestone, and the western portion being the Darra Formation (noted as '*Tod*' on the map) comprising sandstone, conglomerate, claystone and siltstone. It should be noted that the tertiary 'rocks' are semi-consolidated and are often identified as silty clay or sandy clay when broken down or weathered near the ground surface.

Figure 2: Surface geology and the locations of nearby registered groundwater monitoring wells

2.4 <u>Hydrology</u>

The site is located adjacent to the Brisbane River and forms part of a small local gully catchment. According to data from the Brisbane City Council (BCC), the peak flood level was RL11.4mAHD in January 2011. A portion of the site may be affected by flood as illustrated in Figure 3.

Figure 3: BCC Flood Map with the overall Oxley PDA site boundary shown in red

2.5 Rainfall

The Australian Government Bureau of Meteorology (BoM) rainfall data has been used to provide long term climate context for the site (refer to website http://www.bom.gov.au/climate). The rainfall data from the Oxley Station (#40463) has been used for this assessment. The long term, 1971 to 2020, average monthly rainfall recorded at this station is presented in Figure 4, and the statistics are summarised in Table 1. The long term average annual rainfall in this location is 1,036mm; February is the month of maximum rainfall and August and September generally have the least rainfall.

Figure 4: Long term average rainfall at the Oxley Station (Station No. 40463)

Statistic	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Mean	135.6	145.9	110.7	72.7	87.3	58.0	41.8	34.1	31.4	73.3	102.8	115.8	1036.3
Lowest	17.2	14.6	3.4	2.6	3.0	2.0	0.0	0.0	0.8	6.0	7.0	30.2	504.7
5th %ile	30.5	24.6	10.8	7.7	8.8	4.2	2.3	0.6	1.5	17.5	14.8	36.2	559.2
10th %ile	39.5	41.3	18.0	9.2	13.4	9.9	4.0	3.4	1.9	20.3	25.1	48.9	695.6
Median	108.6	120.9	97.6	49.3	55.4	40.8	29.0	22.5	23.6	51.6	85.8	102.7	1028.2
90th %ile	266.6	291.1	197.8	151.1	190.4	116.1	74.7	75.6	74.4	138.0	207.1	197.1	1428.7
95th %ile	279.6	301.9	224.1	178.9	279.9	135.0	136.4	90.4	81.3	162.5	233.6	238.9	1518.9
Highest	485.2	362.5	437	412.3	570	301.6	315.5	102.5	98.8	351.1	353.4	377.7	1676.1

2.6 Past Landslides

It is understood that past significant landslides have previously occurred within the Corinda Formation (and overlying soils), along Seventeen Mile Rocks and Blackheath Roads site boundaries, in the general vicinity (and immediately to the east of) of the Stage 1A site.

General comment on the relationship between groundwater and landslides in the Brisbane area is as follows:

Hoffman and Willmott (1984)¹ note that "the prime cause of slope failure is excessive pore pressure in interbedded, inclined claystone and sandstone beds in the Tertiary units.... (due to) infiltration of extra water (for example by earthworks, pipe trenches, garden watering, etc.) into permeable layers within the slope, or from compacting of soil at the toe of the slope thus prohibiting natural seepage into drainage channels. Most significant, however, is the rise of the water table, and pore pressure, when the natural forest cover of an area is cleared. Loss of root support also directly reduces the effective strength of the soil."

For supplementary information on site slope stability assessment results, the reports noted in Section 2.1 should be referred to.

2.7 Registered Groundwater Bores

A search of the Department of Natural Resources, Mines and Energy's (DNRME) registered bores identified nine registered groundwater bores that are located within or near the boundaries of the local groundwater system. The locations of these registered bores are included in Figure 2 and a summary is presented in Table 2. There is minimal hydrogeological information in the registered bores in the public domain, except for the geological logs of the bores which help to understand the geology in the surround areas.

The second se				SWL	Aquifer	Yield	
Bore Number	Easting	Northing	ng Depth (mbgl) (mbgl) Year		Stratigraphy	(L/s)	
124053	497285	69529836	33	10000	Clay	1.18	
133086	495369	6951489	79				
133741	496950	6952768	54				
134207	497598	6952741	42				
145326	497080	6952792	45				
181272	497170	6952569	15	-3.7	Clay – Darra Formation		
181273	497157	6952475	15				
181274	497121	6952337	15	-5.3	Clay – Corinda Formation		
181275	497058	6952321	15				

Table 2: Summary of Registered Groundwater Bore Information

¹ Hoffman, G.W. & Willmott, W.F. 1984 Landslide Susceptibility of Natural Slopes in the City of Brisbane Department of Natural Resources, Mines and Water 1984/10

SECTION 3 FIELDWORK

3.1 Groundwater Monitoring Wells

3.1.1 Drilling and Sampling Methods

The groundwater assessment was carried out in conjunction with geotechnical investigation of the Stage 1A site. The geotechnical investigation comprised the drilling and sampling of six bores (Bores 100 to 105) to between 15.25m and 21.95m depth, with truck and track mounted Hydrapower Scout drilling rigs. All bores were initially drilled using solid flight augers to between 2.5m and 3.0m depth, then extended using wash-bore drilling methods. Strata identification was based on inspection of cuttings recovered on the augers, supplemented with inspection of disturbed Standard Penetration test (SPT) and 'undisturbed' 50mm diameter tube samples, recovered at selected depths. At the completion of the drilling of Bores 100, 101, 102 and 105, a groundwater monitoring well was installed in each bore.

Experienced geotechnical engineers set out the bore locations, logged the subsurface profiles encountered, determined the insitu sampling and testing program and supervised the fieldwork and the installation of the groundwater monitoring wells.

3.1.2 Construction Details of the Monitoring Wells

The groundwater monitoring wells were constructed from threaded Class 18 UPVC with factory slotted screen (0.5mm slot width and 4mm slot spacing). A coarse sand pack was then placed around the screened section and up to a height of 0.4m to 0.5m above the screen, before being sealed with a 300mm to 400mm bentonite plug. The annulus above the bentonite seal was filled with concrete, and the bores were capped at the surface using a lockable cover over the UPVC. Construction details for each well (including for monitoring wells installed during previous investigations), are summarised in Table 3 and are also indicated on the relevant attached Bore Report sheets.

Ground Well		Well	Screen Depth (mbgl)		Screen	Strata	Completion
Well	Level (mAHD)	Depth (mbgl)	Тор	Bottom	Length	Screened	Date
21	14.5	12.0	6.0	12.0	6.0	Silty Clay	26 September 2018
25	19.0	15.0	6.0	15.0	9.0	Mudstone	23 January 2019
26	20.5	15.0	6.0	15.0	9.0	Mudstone	24 January 2019
27	26.5	15.0	6.0	15.0	9.0	Sandstone/Mudstone	9 December 2016
28	25.0	15.0	6.0	15.0	9.0	Mudstone	25 January 2019
29	25.0	15.0	6.0	15.0	9.0	Mudstone	7 March 2019
100	48.5	20.0	7.5	20.0	12.5	Sandstone	29 June 2020
101	45.8	15.0	6.0	15.0	9.0	Clayey Sand	30 June 2020
102	38.0	16.7	5.0	16.5	11.5	Silty Clay/Sandstone	1 June 2020
105	32.0	15.0	9.0	15.0	6.0	Silty Clay	9 June 2020

Table 3.	Summary of	Onsite	Monitoring	Mell	Construction Details
Table 5.	Summary Or	Olisile	womoning	vve <i>n</i>	Construction Details

3.2 Insitu Hydraulic Testing

Insitu hydraulic tests were carried out in all available monitoring wells, including four newly installed wells and six existing wells. On the basis of the well depth and anticipated well yield, hydraulic testing was performed using a slug test methodology, which is described in Section 4.3, along with a summary of the test results.

SECTION 4 RESULTS OF INVESTIGATIONS

4.1 Subsurface Conditions

The subsurface conditions encountered in the (current) Stage 1A bores are given on the Bore Report sheets included in Appendix A, using classification and descriptive terms defined in accompanying notes (which are based on Australian Standard AS1726-1993). It should be noted that the rock types indicated on the Bore Report sheets are based on visual assessment only; no petrographic analysis has been undertaken for confirmation.

For a description of the subsurface conditions encountered at the locations of Bores 18 and 100 to 105 (being the groundwater monitoring wells located in Stage 1A), the Bore Report sheets should be consulted. However, in broad summary the subsurface conditions encountered in the bores generally comprised a surface layer of either topsoil to between 0.1m and 0.5m depth in Bores 103 and 104, or fill which was encountered to between 0.2m and (possibly) up to 7.0m depth in Bores 18, 101 and 102. The fill is probably uncontrolled and in Bores 18 and 102, comprised silty/sandy clays that essentially had the same appearance as the natural soils, and it was therefore very difficult to distinguish the fill from the natural soils. As a result, the depth of fill indicated in the Bore Report sheets for Bores 18 and 102 should be considered as approximate only and subject to confirmation.

The topsoils and fill were underlain (or exposed from ground surface in Bore 105), by interbedded layers of stiff to hard silty/sandy clay and medium dense to very dense clayey sand, which are considered to be predominantly residual soils, derived from the in place weathering of predominantly mudstone and sandstone (rock). The soils were underlain in turn in all bores, except Bore 101, by extremely low to very low strength sandstone/mudstone/siltstone below 4.5m and 13.5m depth approximately. In Bore 102 a thin low strength band of mudstone was encountered within the clays and in Bores 103 and 104, bands of silty clay between 1.0m and 2.0m thick were encountered within the rock. It should be noted that 'harder' rock may exist close below bore termination depths and at shallower depth elsewhere on the site.

4.2 <u>Water Level Observations</u>

4.2.1 Spot Observations

The onsite groundwater level was measured in nine available wells on 31 July 2020. The measured water levels are presented in Table 4. The onsite groundwater level varied with location and ground surface elevation of the wells, with the lowest at RL4.4mAHD in Well 21 and the highest at RL39.3mAHD in Well 100. The water levels in the new wells (Wells 100 to 105) in the Stage 1A area are generally much higher than those in existing wells by 10m to 26m, mainly due to a higher ground level and lower permeability of the aquifers.

Well	Ground	Water Level		
	Surface Elevation (AHD)	Depth (m)	Reduced Level (AHD)	Date
21	14.5	10.07	RL4.4mAHD	31 July 2020
25	19.0	12.46	RL6.5mAHD	31 July 2020
26	20.5	13.60	RL6.9mAHD	31 July 2020
27	26.5	Dry	Dry	31 July 2020
29	25.0	12.17	RL12.8mAHD	31 July 2020
100	48.5	9.25	RL39.3mAHD	31 July 2020
101	45.8	7.28	RL38.5mAHD	31 July 2020
102	38.0	14.61	RL23.4mAHD	31 July 2020
105	32.0	10.71	RL21.3mAHD	31 July 2020

Table 4: Observed Groundwater Levels on 31 July 2020

4.2.2 Historic Observations – Water Level Fluctuation

The groundwater level in the existing onsite wells was observed multiple times and the monitoring results are summarised in Table 5, and are plotted in Figure 5.

Table 5.	Observed Groundwater	lovale in Existing	Walls hotwoon	September 2018 and July 2020
Table 5.	Observed Groundwaler	Levels III Existing	vvens between	September 2010 and July 2020

	Ground	Water Level			
Well	Surface Elevation (AHD)			Date	
		9.9	RL4.6m	27 September 2018	
		10.9	RL3.6m	31 October 2018	
		9.8	RL4.7m	19 February 2019	
		9.8	RL4.7m	12 March 2019	
		9.9	RL4.6m	20 March 2019	
		9.8	RL4.7m	8 May 2019	
21	RL14.5m	10.0	RL4.5m	20 May 2019	
		3.1	RL11.4m	7 February 2020	
		7.12	RL7.4m	10 March 2020	
		10.11	RL4.4m	17 March 2020	
		10.09	RL4.4m	29 June 2020	
		10.07	RL4.4m	31 July 2020	
		10.1	RL4.4m	10 August 2020	
		12.3	RL6.7m	19 February 2019	
		12.3	RL6.7m	12 March 2019	
		12.3	RL6.7m	20 March 2019	
		12.3	RL6.7m	8 May 2019	
		12.5	RL6.5m	20 May 2019	
		12.8	RL6.2m	11 July 2019	
25	RL19.0m	12.6	RL6.4m	16 August 2019	
		12.6	RL6.4m	7 February 2020	
		12.65	RL6.4m	10 March 2020	
		12.62	RL6.4m	17 March 2020	
		12.6	RL6.4m	29 June 2020	
		12.46	RL6.5m	31 July 2020	
		12.5	RL6.5m	10 August 2020	

	Ground	Water Level	Measurements	Date	
Well	Surface Elevation (AHD)	Depth (m)	Reduced Level (AHD)		
		12.9	RL7.6m	19 February 2019	
		13.0	RL7.5m	12 March 2019	
		12.6	RL7.9m	20 March 2019	
		12.9	RL7.6m	8 May 2019	
		13.3	RL7.2m	20 May 2019	
26	DI 20 5m	13.3	RL7.1m	11 July 2019	
20	RL20.5m -	13.2	RL7.3m	7 February 2020	
		14.11	RL6.4m	10 March 2020	
		13.98	RL6.5m	17 March 2020	
		13.63	RL6.9m	29 June 2020	
		13.6	RL6.9m	31 July 2020	
		13.8	RL6.7m	10 August 2020	
27*	RL26.5m	14.8	RL11.7m	19 February 2019	
		12.2	RL12.8m	19 February 2019	
		12.0	RL13.0m	12 March 2019	
		12.0	RL13.0m	20 March 2019	
		12.0	RL13.0m	8 May 2019	
		11.9	RL13.1m	20 May 2019	
28	RL25.0m	11.8	RL13.2m	11 July 2019	
20	RE25.0III	12.2	RL12.8m	7 February 2020	
		13.12	RL11.9m	10 March 2020	
		13.02	RL12.0m	17 March 2020	
		12.31	RL12.7m	29 June 2020	
		12.17	RL12.8m	31 July 2020	
		12.6	RL12.4m	10 August 2020	
		11.7	RL7.3m	12 March 2019	
		10.5	RL8.5m	20 March 2019	
		10.6	RL8.4m	8 May 2019	
		10.9	RL8.1m	20 May 2019	
29	RL19.0m	11.4	RL7.6m	11 July 2019	
		11.3	RL7.7m	16 August 2019	
		14.0	RL5.0m	7 February 2020	
		7.25	RL11.8m	10 March 2020	
		9.5	RL9.5m	17 March 2020	

Table 5:	Observed	Groundwater	Levels	in	Existing	Wells	between	September	2018	and	July	2020
	(Continued)											

 $^{\star}\,$ Well 27 was dry at other observation dates

The groundwater level in each well is generally stable during the observation period between September 2018 and August 2020, with the exception of observations in Wells 21 and 29 in February and March 2020 during which there was a prolonged period of rainfall as shown in Figure 6. It is understood that the large fluctuation in Well 29 was caused by surface water leakage into the well rather than due to the rise of the water table. Well 21 is located in the low land area near the alluvium and groundwater in this well may be hydraulically connected to the alluvium aquifer because the water level in this well had been low, approximately RL4.5mAHD under average rainfall conditions, compared with RL11.4mAHD in February 2020.

In brief summary, rainfall and flood in the river may cause groundwater level rise in the alluvium aquifer in the low land area, but their impacts in the higher ground area appears to be minimal.

Figure 6: Daily rainfall at the Oxley Weather Station during the period of groundwater observation

4.2.3 Continuous Monitoring of Groundwater Levels

The groundwater level in the sloping areas of the site is considered to be mainly determined by the rainfall infiltration recharge. There was some notable rainfall on Friday, 7 August 2020 comprising 14.6mm for twenty-four hours to 9am 8 August 2020. In order to assess the magnitude of rainfall recharge on groundwater level, a data logger was installed in three monitoring wells (Well 25, 28 and 102) on Monday morning, 10 August 2020, and the groundwater level was continuously recorded at ten minute intervals for three days.

The monitoring results are presented in Figure 7 to Figure 9. It is appears that there is a slight upward trend in all three hydrographs from the start of monitoring (8am 10 August) to the midday of 12 August, up approximately 0.02m in Well 25; 0.1m in Well 28 and 0.08m in Well 102. The water level then started decline.

It is possible that the rise in water level was caused by rainfall infiltration recharge, but the magnitude of change is very small, approximately the same magnitude as the previously recorded daily tidal influence.

Figure 7: Hydrograph of continuous groundwater monitoring in Well 25 (10 to 13 August 2020)

Figure 8: Hydrograph of continuous groundwater monitoring in Well 28 (10 to 13 August 2020)

4.3 Insitu Hydraulic Testing

4.3.1 Slug Test - Bouwer-Rice Method

On the basis of the anticipated well yields assessed during the process of well development, the insitu hydraulic tests were carried out using a slug test methodology. The slug test methodology involves 'instantaneous' injection or removal of water from a well and then measuring the variation of water level with time; the injection variation of the slug test method is also commonly known as a falling head test; the slug test method is suitable for shallow and low yield wells.

For the slug test, an approximate 2 litre volume of water was bailed out 'instantaneously' from the well. The water level recovery was automatically recorded every second with a data logger, which was installed 0.5m above the bottom of the well. During the test, a water level dipper was also used to monitor the recovering water level. The test was ended when 95% of initial drawdown was recovered or fifteen minutes from the start of the test had elapsed.

The two most popular methods to process the slug test data are the Hvorslev method (Hvorslev, 1951)² and the Bouwer-Rice method (Bouwer and Rice, 1974)³. The former is based on an analytical equation (Thiem Equation) for a fully penetrated well in a confined aquifer and the latter is an expansion of the former and can be used for unconfined aquifers and partially penetrating wells, through the introduction of three empirical coefficients that were determined through numerous Resistor-Capacitor Network models (an analogy modelling technique historically used before computer based methods were widely used and analogous to a current day finite difference calculation). The Bouwer-Rice method has been adopted because it's assumptions have been found to be closer to the real groundwater conditions (mostly unconfined aquifers for alluvial sediments) than the Hvorslev method.

In an ideal uniform aquifer and perfect execution of all testing procedures, the ratio of the time-varying water level and the initial water level (y/y_o) is a straight line on a semi-log plot, using the Bouwer-Rice method. The gradient of the slope reflects the hydraulic conductivity of the aquifer being tested; the steeper the slope, the greater the hydraulic conductivity.

In reality, the aquifer is not uniform and removal or injection of water is not 'instantaneous'. Therefore, the test data is often curvy on the semi-log plot. In such circumstances, instead of fitting the whole data with one straight line, two lines are used to define the range of hydraulic conductivity. An example of such a plot (Well 100) is presented in Figure 10. When the test data is not a straight line, two K values, an early-time and a late-time, are given to define the range of the K value of the tested materials.

² Hvorslev M.J. 1951 Time lag and soil permeability in groundwater observations, Bull. No. 36. Waterways Experiment Station, Corps. Of Engineers. U.S. Army, 50pp

³ Bouwer H and Rice R.C. 1976 A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, *Water Resources Research, Vol 12 No. 3 pp 423 - 428*

Figure 10: Slug test results for Well 100, using the Bouwer-Rice method

4.3.2 Insitu Test Results

The results of the insitu hydraulic testing are summarised in Table 6, and the processing sheets are attached in Appendix C. The calculated values of hydraulic conductivity (K) varied among wells but are generally within the typical range of the tested materials.

It should be noted that for the sake of easy identification of hydrogeological units in latter sections of this report and being consistent with the site geology map, the material above the sandstone (or RL30mAHD), is defined as 'Mudstone' and that below the sandstone as 'Siltstone', though different definitions such as clay or silty clay may be used in the geotechnical Bore Report sheets.

Well Screen Depth (epth (mbgl)	Screen	Matheadalaan	Interpreted Hydraulic
wen	Тор	Bottom	Aquifer	Methodology	Conductivity (m/day)
21	6.0	12.0	Silty Clay	Slug Test - Bouwer-Rice	0.0191
25	6.0	15.0	Siltstone	Slug Test - Bouwer-Rice	0.7710
25*	6.0	15.0	Siltstone	Slug Test - Bouwer-Rice	0.8070
26	6.0	15.0	Siltstone	Slug Test - Bouwer-Rice	0.0181
27	6.0	15.0	Sandstone/Mudstone	Falling Head Test - Bouwer-Rice	0.1060
28	6.0	15.0	Siltstone	Slug Test - Bouwer-Rice-early	0.3000
28	6.0	15.0	Siltstone	Slug Test - Bouwer-Rice-late	0.0052
29*	6.0	15.0	Siltstone	Slug Test - Bouwer-Rice	0.0493
29*	6.0	15.0	Siltstone	Falling Head Test - Bouwer-Rice	0.0087
100	7.5	20.0	Sandstone	Slug Test - Bouwer-Rice	0.0273
101	6.0	15.0	Mudstone	Slug Test - Bouwer-Rice-early	0.1030
101	6.0	15.0	Mudstone	Slug Test - Bouwer-Rice-late	0.0066
102	5.0	16.5	Sandstone	Slug Test - Bouwer-Rice	0.7280
105	9.0	15.0	Siltstone	Slug Test - Bouwer-Rice	0.1670

Table 6: Results of Interpreted Insitu Hydraulic Tests

* The test was performed during previous investigation conducted in 2019

Table 7: Statistics of Interpreted K Values for Each Aquifer

Aquifer	Screen RL(mAHD)		Statistics of K Values (m/day)					
	Тор	Bottom	Average	Median	Minimum	Maximum	Bore	
Mudstone	39.8	30.8	0.055	0.055	0.006	0.103	101	
Sandstone	33.0	21.5	0.728	0.728	-	-	102	
Siltstone	23.0	4.0	0.20212	0.0337	0.0052	0.771	25, 26, 28, 29, and 105	
Alluvium	C.		0.3	0.3	-	-	Estimate - no onsite data	

4.4 Particle Size Distribution

Twenty-four selected samples of soil recovered from Bores 100 to 105, drilled during the current geotechnical investigation, were tested for the measurement of particle size distribution using wash sieve grading techniques, and the reported results are summarised in Table 8, and detailed test result report sheets are attached in Appendix D. The highlighted samples in Table 8 indicate a sand zone in four of the six bores between RL22mAHD and RL30mAHD, as shown in Figure 11. The sand zone is likely the weakly cemented Tertiary sandstone of the Darra Formation, which appears as sand when weathered near the ground surface. The Tertiary sandstone is considered a local permeable zone though its K value is not as large as the Quaternary sand sediments present in the northern portion of the Oxley PDA site.

Two soil samples, one each from Bores 17 and 19, from previous preliminary geotechnical investigations were previously tested for particle size distribution and their results are included in Table 8 and Figure 11, indicate a sand zone between RL22mAHD and RL30mAHD, which is considered likely to consist of weakly cemented Tertiary sandstone of the Darra Formation; Bores 17 and 19 are located on the east slope of the overall site. It is noted that the result for the sample from Bore 19 at elevation RL23.9mAHD indicates it is within the sand zone, consistent with the results from the Stage 1A bores. The sample from Bore 17 at RL7.9mAHD, could indicate another sandstone (or the conglomerate), strata of the Darra Formation.

			-	Percent Passing					
Bore	Sample Sample Depth Description (m)		Sample Moisture Content (%)	Gravel Fraction ⁽¹⁾ (%)	Sand Fraction ⁽²⁾ (%)	Silt and Clay Fraction ⁽³⁾ (%)			
	4.5 - 4.95	Silty Clay	28.1	4	10	86			
	7.5 - 7.9	Clayey Silt	30	0	1	99			
100	10.5 - 10.63	Sandstone (XW)	23.4	3	41	56			
	13.5 - 13.94	Sandstone (XW)	19.1	0	19	81			
	18.0 - 18.44	Silty Clay	23.1	0	1	99			
	1.5 - 1.9	Silty Clay with Sand	22.4	1	10	89			
101	6.0 - 6.45	Sandy Clay	17.6	9	31	60			
	9.0 - 9.43	Silty Clay	20.1	0	4	96			
	12.0 - 12.45	Silty Clay	19.1	0	3	97			
	6.0 - 6.45	Silty Clay	20	0	8	92			
102	13.5 - 13.95	Sandstone (XW)	18.9	0	83	17			
	15.0 - 15.45	Sandstone (XW)	21.3	0	78	22			
	1.5 - 1.85	Silty Clay	14.8	1	9	90			
100	4.6 - 4.72	Sandstone (XW)	16.5	0	85	15			
103	6.0 - 6.13	Sandstone (XW)	13.8	0	83	17			
	10.5 - 10.77	Sandstone (XW)	20.8	2	84	14			
	3.0 - 3.45	Silty Clay	12.4	1	7	92			
101	6.0 - 6.14	Sandstone (XW)	22.4	0	84	16			
104	10.5 - 10.95	Silty Clay	7.6	0	0	100			
	15.0 - 15.43	Mudstone (XW)	20.2	0	6	94			
105	7.5 - 7.8	Silty Clay	20.8	0	4	96			
	9.0 - 9.23	Clayey Sand	24.9	2	69	29			
105	10.0 - 10.45	Silty Clay	21.8	0	1	99			
	10.5 - 10.75	Clayey Silt	22.6	0	4	96			
17	9.0 - 9.05	Sand	4.7	12	75	13			
19	4.5 - 4.95	Clayey Sand	10	0	60	40			

Table 8: Summary of Particle Size Distribution Test Results

⁽¹⁾ Particle size <60mm, >2mm; ⁽²⁾ Particle size (approximately) <2mm, >0.075mm; ⁽³⁾ Particle size (approximately) <0.075mm

Figure 11: Results of the particle size distribution analysis

SECTION 5 CONCEPTUAL GROUNDWATER MODEL

5.1 <u>General</u>

Groundwater conditions are generally summarised into a conceptual groundwater model, based on which the numerical model is constructed. The conceptual model provides an understanding of how the groundwater system operates and is an idealised and simplified representation of the natural system. Development of a conceptual groundwater model requires qualitative interpretation of available data. The conceptual groundwater model that was used for this groundwater assessment at the site was developed on the basis of the results of the field investigation, the insitu and laboratory testing data, and third party information.

5.2 Local Geology and Hydrogeologic Units

The geologic units encountered in the bores across the site were highly variable in composition and layer depth/thickness. For the purposes of numerical modelling of groundwater flow, geologic units are typically combined into a smaller number of hydrogeologic units (aquifers), each of which has similar hydrologic characteristics and is distinct from other units.

Based on the 1:100,000 Series Geology Map (Figure 2), there are three geological units in the assessment area: Quaternary alluvial sediments (Qha/2), and two formations of Tertiary sediments (Toc and Tod). From groundwater perspective, the geological units can be generalised into four hydrogeological units, with the boundaries between units being determined by hydraulic properties rather than ages of the sediments.

The four adopted hydrogeological units are shown Figure 12 and a cross-sectional view is shown in Figure 13. The alluvium includes fill materials in the low land areas. The Tertiary sediments are generalised into three units: mudstone, sandstone and siltstone. The sandstone, which may appear as sand on or near the ground surface, is a significant hydrogeological unit with respect to its impacts on groundwater levels in the surrounding areas as it is the most permeable layer of the three.

According to the structures on the detailed surface geology presented on the Queensland Globe, the interface of the Tertiary units dips approximately 10° to the south-east. This dip direction and angle are consistent with the descriptions presented on the geotechnical Bore Report sheets for Bores 102 and 103, as depicted in Figure 13. However, for the groundwater modelling, it was assumed that the interfaces were horizontal.

Figure 12: Hydrogeological units in the project area

Figure 13: Geological cross-section along Line A-A'

5.3 Groundwater Flow, Recharge and Discharge

Given the Stage 1A site's location and elevation, rainfall infiltration is considered to be the only source of groundwater recharge in the hilly area of the site. Generally, groundwater flows toward the low land area and eventually discharges to the alluvium and the Brisbane River. Due to the low permeability of the site soils and the 'steep' slope, some groundwater may discharge to the ground surface through seepage after heavy rains.

SECTION 6 NUMERICAL MODEL

6.1 Model Objective and Complexity Level

Groundwater level is one of the key factors that affect the stability of slopes and the objective of the groundwater assessment was to estimate the maximum groundwater level in the sloping areas of the Stage 1A portion of the Oxley PDA site.

Based on data availability and the timeframe for the assessment, the model complexity is defined as BASIC according to the Australia Groundwater Modelling Guidelines (SKM and NCGRT, 2012).

6.2 Model Code

The numerical groundwater model was developed using the computer software MODFLOW-SURFACT (Hydrogeologic, Inc.), an enhancement variant of MODFLOW (Harbaugh, 2005)⁴, the US Geological Survey modular groundwater model - a three-dimensional finite difference groundwater flow modelling code. The graphical user interface software Visual MODFLOW (Schlumberger Water Services) was used to create the model and to carry out post-processes. The model software is widely used throughout the world for groundwater modelling and is considered suitable for modelling at the site, as it can simulate a 3D groundwater regime with variable site geology.

6.3 Model Grid

The model grid was placed over an area of approximately 3,200m x 2,100m. The size of model cells was approximately 5m x 5m at the site, and gradually increased to 15m x 15m at the margins of the model. The model comprised two hundred rows and two hundred and seventy-eight columns and a plan view of the model grid is shown on Figure 14.

Figure 14: Plan-view of the model grid development site

⁴ Harbaugh, A.W. 2005, *MODFLOW – 2005, A Modular Three Dimensional Finite Difference Groundwater Flow Model,* U.S. Geological Survey, Open File Report 91 – 536, Denver

The model comprises seven layers (refer Figure 15); the top of the model was made coincident with the elevation of the existing site ground surface and the bottom of the model was set at RL-30mAHD. As described in Section 5.1, it was assumed that the sandstone is horizontal and at an elevation between RL22mAHD and RL30mAHD.

The objective of the assessment was to calculate the water level in the elevated areas of the site, which is mainly affected by rainfall and the K values of the three hydrogeological units in the elevated area of the site where mudstone, sandstone and siltstone are present. Very little data is currently available on the alluvium over the 'low lying', northern sections of the site. On the basis of drilling experience in the broad Brisbane area by Butler Partners, the upper alluvium comprises mainly silty clay with a thickness of 10m. The extent of the alluvium aquifer was determined from the geology map. The thickness of alluvium generally increases toward the river and the lower portion of the alluvium comprises mainly sand which was assumed to be beyond the boundary of the site.

Figure 15: Cross-section view of the model layering near the site (vertical exaggeration ratio 1:3)

6.4 Boundary Conditions

6.4.1 Constant Head Boundaries

In order to reduce artificial impacts, the model extents were designed to be close to the natural groundwater boundaries, Brisbane River to the north; Jindalee Creek to the west; and Oxley Creek and its tributaries on the east and a portion of the south boundary. The river and the creeks were represented in the model using the Constant Head Boundary Package of MODFLOW. The value of the constant head was set respectively at RL1mAHD for the Brisbane River, RL2mAHD for Oxley Creek and RL3mAHD for Jindalee Creek. It should be noted that constant head values represent the water levels in the aquifer near the surface water bodies.

6.4.2 No-flow Boundaries

Apart from the constant head boundaries, the rest of the lateral boundaries were represented in the model as no-flow boundaries, as these boundaries are generally parallel to the groundwater flow lines or divide lines and groundwater flow through these lines is too small to have any significant impact on the model results for the purpose of the model.

6.4.3 Rainfall Recharge

Rainfall infiltration is considered to be the main source of groundwater recharge in the Stage 1A area, due to its 'high' elevation. Based on the surficial geology (mostly silty clay in the model domain), and the complexity level of the model, it was assumed that the recharge rate was uniform throughout the model domain. The recharge rate was determined through model calibration which is discussed in Section 6.5.

6.5 <u>Model Calibration</u>

6.5.1 Calibration Methods and Data

Based on data availability and model complexity level, a steady-state model calibration was performed. The calibration of the model was undertaken by adjusting the parameter values so as to achieve the 'goodness of fit' between the observed and the simulated groundwater levels. The calibration was carried out using a trial-and-error method.

The data used for the calibration is the observed water levels on 31 July 2020, as summarised in Table 4, with two additional water levels (refer to Table 5), one being the average water level in Well 29⁵ (RL8.5mAHD) and the other being the average water level in Well 27 (RL11.7mAHD).

6.5.2 Calibrated Parameter Values

A summary of calibrated hydraulic conductivity (K) values is presented in Table 9. The model calibrated values are considered reasonable with respect to the typical values for the corresponding materials and also the range of insitu test results.

It should be noted that the insitu test results represent the horizontal K values only. The vertical K value is typically one-tenth of the horizontal K value, but the ratio may be reduced when the materials are separated into multiple layers. The vertical K values in the model were determined by calibration with consideration of the typical ratio.

Parameter	Aquifer	Model Calibrated Values
prizontal Hydraulic Conductivity (m/day)	Mudstone	0.12
	Sandstone	0.8
Horizontal Hydraulic Conductivity (m/day)	Siltstone	0.05
	Upper Alluvium (Silty Clay)	0.5
	Lower Alluvium (Sand)	3
	Mudstone	0.03
	Sandstone	0.1
Vertical Hydraulic Conductivity (m/day)	Siltstone	0.01
	Upper Alluvium (Silty Clay)	0.1
	Lower Alluvium (Sand)	0.3

Table 9: Results of Calibrated K Values

The calibrated recharge rate is 15mm/year, which is approximately 1.5% of the annual average rainfall. With consideration of the factors such as the low K value of surficial geology, sloping topography and more importantly, low fluctuation of the observed water levels during rainfall events, the calibrated recharge rate is considered to be reasonable.

⁵ The well was destroyed in recent excavation

6.5.3 Comparison of Measured and Modelled Water Levels

Comparisons of the modelled and the observed water levels are summarised in Table 10 and a cross-plot of the two is shown in Figure 16. The normalized RMS (root mean squared of the differences) is 3.2% which is acceptable for a basic model, especially considering the heterogeneity of the actual aquifer and significant differences in water levels over a small area in the model domain.

14/-11		Groundwater Level (AHD)	
Well	Observed	Calculated	Difference
21	RL4.4m	RL6.3m	1.9m
25	RL6.5m	RL6.8m	0.3m
26	RL6.9m	RL7.7m	0.8m
27	RL11.7m	RL12.3m	0.6m
28	RL12.8m	RL12.4m	-0.4m
29	RL8.5m	RL7.8m	-0.7m
100	RL39.3m	RL41.4m	2.1m
101	RL38.5m	RL37.9m	-0.6m
102	RL23.4m	RL23.1m	-0.3m
105	RL21.3m	RL22.9m	1.6m

Figure 16: Comparison of modelled and observed groundwater levels

6.6 Modelled Groundwater Level

Modelled contours of the groundwater table elevation are shown in Figure 17, and two cross-sectional views of the modelled results are shown in Figure 18 and Figure 19.

Figure 18: Cross-section view of modelled water table (in red) across Well 102 (Section B-B')

Figure 19: Cross-section view of modelled water table (in red) across Well 28 (Section C-C')

6.7 Discussion of Modelled Results

6.7.1 Water Table and Aquifer Saturation

It should be noted that it is an academic subject of discussion to determine the water table position in an unsaturated zone of low permeability materials, such as clay, because there is always water (moisture) in clayey materials, but the pore voids in the soil are not fully saturated. In other words, the 'aquifer' below the water table indicated in Figure 19 and Figure 20 does not necessarily indicate saturated materials. In the model, the position of the water table is determined using the van Genuchten Method (van Genuchten, 1980)⁶. As can be seen in the modelled results of saturation in Figure 20, the water table position is coincident with the 30% saturation contour line in the sandstone in Well 102; the saturation below the water table in the mudstone is less than 30%.

Figure 20: Cross-section view of modelled contours of aquifer pore saturation (in light-blue) across Well 102

⁶ van Genuchten, M.Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. **44** (5): 892–898

Project No.: 018-118D - 15 September 2020_

6.7.2 Water Level Fluctuation

The observed data is not sufficient to establish a quantitative relationship between rainfall and groundwater level, but it does indicate, as described in Section 4.2.2 and Section 4.2.3, that the fluctuation of the groundwater level is slow and small in response to rainfall events. Due to the low hydraulic conductivity of the near surface materials, especially (but not only) in the Stage 1A area, the effective recharge⁷ is expected to be small; from the steady state calibration the effective recharge rate is 15mm per year, or approximately 1.5% of the annual rainfall.

Based on the observed data, the groundwater level in or near the low lying alluvium area, such as Wells 21 and 29, may be affected by short, intense rainfall events (storms). However, the water levels in the elevated areas of the site are not affected by rainfall in any significant manner, as the recharge rate is limited by the low permeability of the mudstone. In addition, the more permeable sandstone also drains any overlying mudstone, resulting in a relatively stable groundwater level in the mudstone.

In summary, groundwater in the elevated areas in Stage 1A is expected to experience only a small fluctuation from the current water levels, under average and storm rainfall conditions. It is recommended that monitoring of the groundwater levels in the monitoring wells be continued on a regular (at least monthly), basis for as long as possible through the upcoming wet season.

As indicated in Figure 19 and Figure 20, the minimum depth of the groundwater table level calculated from the model is approximately 5m; as noted above, the materials immediately beneath the indicated water table level <u>are not</u> saturated.

There are multiple water level observations in the existing monitoring wells. Though the observed data is not sufficient to establish a quantitative relationship between rainfall and water level, it does indicate that the fluctuation of the groundwater level in the elevated area of the site is very slow and very small. For example, there is no indication of groundwater level raised in March 2020 in the elevated site area (Wells 25, 26, 27 and 28), after a prolonged period of rainfall in February 2020.

Based on the permeability values of surficial geology, the observed hydrographs and modelled aquifer saturations, it is considered that the modelled water table elevations can be used as inputs for slope stability analysis under storm conditions. The water table level is more sensitive to the duration of the rainfall than the intensity of the rainfall, due to the low permeability value of the surficial geology and also the sloping topography. Also, the site is located in a ridge area and the sandstone outcrops on both sides of the ridge, therefore, there is insufficient lateral recharge to enable an upward hydraulic gradient that would lift the water level in the mudstone aquifer in the Stage 1A area.

It is noted that the modelled water level in Well 100 is 2m higher than the measured water level, which is higher than the anticipated range of water level fluctuation, therefore there is a margin for error when using the modelled results for slope stability analysis.

⁷ Effective recharge refers to the rate at which groundwater in the unsaturated zone reaches the water table. Some water in the unsaturated zone returns to the surface through evaporation and transpiration

6.7.3 Predictive Uncertainty

The development of the groundwater model has involved a number of assumptions and approximations, due to data limitations and the heterogeneity of the aquifers and there are therefore predictive uncertainties associated with the assumptions and approximations. The modelled results represent the best fit on the basis of currently available data. Comprehensive uncertainty analysis requires more data and a significantly larger scope of work than was available for this assessment.

BUTLER PARTNERS PTY LTD

DR KANGLIN LU Principal Hydrogeologist Reviewed by: SUZANNE WALKER Principal

BRUCE BUTLER Senior Principal

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*: Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geolechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be commiting negligent or intentional (fraudulent) misrepresentation.

KN Group's 'Slope Analysis Layout', Drawing No.19-173-101-EW_Bound 200601.dwg received 01.June2020; and DSDMIP's current site layout plan, Drawing 1018015_34-35D_ROL FIR_EXT20200826.dwg received 26 August 2020

file

APPENDIX A

CURRENT BORE REPORT SHEETS WITH EXPLANATORY NOTES

BORE REPORT

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D

BORE 100

Page No: 1 of 2 Date: 29 June 2020

Ground Surface Level: RL48.5m*

Ueptn (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
0	CANDY OF AV (OID	48.5					
-	SANDY CLAY (CH) - stiff, brown, fine grained sand	-		_	0.5	1.1.1	
. +	SILTY CLAY (CL)		HH	S		5,7,9 N=16	
1-	- very stiff, brown mottled red-brown and grey	-	HH		0.95	Bentonite	
-		47.0-	HH		1.5	5,11,13	R R
2-		-	HH.	S	1.95	N=24	B B
-			HH.				
-		46.0-	HH				
3	- hard, red-brown mottled brown, with fine grained sand, with slickensides		TTTT		3.0		S
-	- nard, red-brown mottled brown, with fine grained sand, with slickensides			U	3.4	pp>600	: :
-		45.0-					
4-			H H			Casing	*
	- very stiff, brown mottled grey, with bands of weathered sandstone and some	- 44.0-	HH		4.5	6,10,17	
5	small fissures			S	4.95	N=27	
1						Sand	-
-		43.0-					: :
6-		1			6.0	7,9,17	
-		42.0-		S	6.45	N=26	: :
-		42.0	H		0.10		
7-		1	T				
-		41.0-	TETE		7.5	500	:=:
8-	CLAYEY SILT (MH) - very stiff, grey	1	111-	U	7.9	pp=500	Ē
-		-	111			Screen -	
-		40.0-	111				: <u>=</u> :
9	hard arou with appall features				9.0	6,14,30	
-	- hard, grey, with small fissures	39.0-	111-	S	9.43	/130mm	
.+	SANDSTONE (XW)		11-1-				
0-	- extremely low strength, red-brown mottled brown and grey, fine to medium	-					
-	grained	38.0-			10.5		Ē
1-		-		S	10.5	30/130mm	
	and the to the transition of the set				10.00		
-	- medium to high strength bands	37.0					
Disturt Bulk Sa	urbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) E bed Sample HB SPT Hammer Bouncing Up ample () No Sample Recovery C Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)	Environr Pushtube NMLC Co		ple			sult (MPa

Groundwater: No free groundwater encountered during auger drilling

Remarks: *Approximate ground surface level estimated from a contour plan supplied by Economic Development Queensland

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D BORE 100 Page No: 2 of 2

Date: 29 June 2020 Ground Surface Level: RL48.5m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
12-	SANDSTONE (XW) - extremely low strength, with medium to high strength bands, grey mottled orange-brown, fine grained	36.0		S	12.0 12.4	13,29,30 /100mm	
13- 14-	- grey, fine grained	35.0		S	13.5 13.94	14,24,30 /140mm	
15-		34.0		S	15.0 15.44	28,29,30	
16-		33.0- 		S	16.5	/140mm 18,29,30	
17- 18-		31.0-	-		16.94	/140mm 15,23,30	
19-	- with silty clay bands	30.0	-	S	18.44	/140mm	
20-	End of Bore at 19.94 m	29.0		S	19.5 19.94	15,24,30 /140mm	,1
21-		28.0					
22-		26.0					
J Uno D Dis B Bul	disturbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) turbed Sample HB SPT Hammer Bouncing (k Sample () No Sample Recovery cket Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)	E Environ Up Pushtub C NMLC Co		(ilt (MPa

Groundwater: No free groundwater encountered during auger drilling

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D

BORE 101

Page No: 1 of 2 Date: 30 June 2020 Ground Surface Level: RL45.8m*

nebru (m)		Description		RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
0	LL	100 A		45.8					
	nixture of clay, sand and gravel ANDY CLAY (CH) stiff, red-brown mottled brown, fin	e to coarse grained sand	_/	45.0		S	0.5 0.95	3,4,6 N=10 Bentonite	
2	nard, grey mottled brown			44.0-		U	- 1.5 - 1.9	pp>600	
3 	ery stiff, grey mottled brown, with	small fissures		43.0		S	- 3.0 - 3.45	3,5,11 N=16	<i></i>
4				42.0				Casing	
- CI n 5-	LAYEY SAND (SC) nedium dense, brown mottled ora	nge-brown, fine grained		41.0	/ / / / ? / / .	S	- 4.5 - 4.95	11,12,11 N=23 Sand	
				40.0				Saliu	
6 d	lense			39.0	/// ///	S	6.0 6.45	14,14,21 N=35	
7	~			38.0		S	- 7.5 7.95	15,23,22 N=45	
	rey			37.0	///		9.0	Screen -	
				36.0		S	9.43	13,14,23 N=37	
- SA	ANDY CLAY (CL) ery stiff, grey, fine grained sand			35.0-		S	— 10.5 — 10.95	7,9,19 N=28	
Disturbed S Bulk Sampl			E Up C	Environme Pushtube S NMLC Cori	Sample	nple			1-1-1-1

Groundwater: No free groundwater encountered during auger drilling

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D BORE 101 Page No: 2 of 2 Date: 30 June 2020

Ground Surface Level: RL45.8m*

Depth (m)		Description		RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
12	SANDY CLAY (CL) - very stiff, grey, fine grained sa	ind		34.0			12.0	0.40.04	
13	- hard			33.0		S	- 12.45	9,13,21 N=34	
4	- with relict rock joints			32.0		S	— 13.5 — 13.95	8,15,23 N=38	
5	- very stiff			31.0-		S	15.0	pp=540	
16 17 11 17 11 11 17 11 11 11 11 11 11 11	E	nd of Bore at 15.4 m		30.0 			- 15.4		
21				25.0 24.0 23.0					
Disturb Bulk Sa	urbed Tube Sample (50mm dia) bed Sample ample Penetrometer Test (kPa)	 S Standard Penetration Test (SPT) HB SPT Hammer Bouncing () No Sample Recovery V Vane Shear Strength, Uncorrected (kPa) 	E Up C	Environm Pushtube NMLC Cor	Sample	mple	(d) Dian (a) Axia	t Load Test Re netral Test I Test p Test	esult (MPa
	Irapower Scout Method: Auger to 3.0m, casing to 2.5	m,then washbore					Logged	by: PZ	

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D

BORE 102

Page No: 1 of 2 Date: 1 June 2020 Ground Surface Level: RL38.0m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
0	FILL - brown, sandy clay, fine to coarse grained, with some fine to coarse subangular gravel - dark brown, silty clay, with trace of charcole	38.0 37.0- 36.0-		S	— 0.5 — 0.95 — 1.5 — 1.95	Casing Concrete 5,8,7 N=15 Spoil 4,9,15 N=24	
3 1 1 1 1 1 1	- grey gravel, fine to medium subangular to angular SILTY CLAY (CH) - very stiff, grey-brown mottled orange - brown	35.0-		S	— 3.0 — 3.45	6,8,10 N=18 Bentonite	
5	- pale grey - pale grey mottled brown	33.0-		U	— 4.5 — 4.95	pp=390 Sand	
6		32.0-		U	6.0 6.45 7.5	pp=400 Screen 8,12,12	
8 	- grey	30.0		S	- 7.95 - 9.0 - 9.45	N=24 pp=470	
10 - 1 (- 1 - 1 (- 1	MUDSTONE (HW) - low strength, pale brown SILTY CLAY (CH) - hard, pale brown	28.0-		(S)	— 10.5 — 10.54	30/40mm HB	
Distu Bulk	sturbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) E rbed Sample HB SPT Hammer Bouncing U Sample () No Sample Recovery C et Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)		mental Sam e Sample oring	ple	(d) Diam (a) Axial	t Load Test Re etral Test Test o Test	esult (MPa
Drilling	ydrapower Scout Method: Auger to 4.5m, casing to 4.5m, then washbore dwater: No free groundwater encountered during auger drilling				Logged	by: NA	

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D

BORE 102

Page No: 2 of 2 Date: 1 June 2020 Ground Surface Level: RL38.0m*

Depth (m)	Description		RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
12	SANDSTONE (XW) - extremely low strength, brown, fine to coarse grained		26.0		S	- 12.0 - 12.1	30/100mm	
13-			25.0			10.5		: E :
- 14			24.0-		S	— 13.5 — 13.59	30/90mm	
15			23.0		S	- 15.0 - 15.45	30/145mm	
16-			22.0-		S	16.5 16.61	30/110mm	
17-	End of Bore at 16.7 m		21.0	888,000,000,000,000,000,000,000,000,000		- 16.61		ji zij
18			20.0					
- 19- -			19.0					
20			18.0					
21-			17.0					
22			16.0					
23-		_	15.0		-			
D Distu B Bulk	sturbed Tube Sample (50mm dia)SStandard Penetration Test (SPT)urbed SampleHBSPT Hammer BouncingSample()No Sample Recoverytet Penetrometer Test (kPa)VVane Shear Strength, Uncorrected (kPa)		Environm Pushtube NMLC Co	Sample	nple	(d) Dian (a) Axia	t Load Test Re netral Test I Test p Test	sult (MPa)
Drillin Groun	Hydrapower Scout g Method: Auger to 4.5m, casing to 4.5m, then washbore Idwater: No free groundwater encountered during auger drilling rks: *Approximate ground surface level estimated from a contour plan supplied by Economic D	evelop	ment Quee	ensland		Logged	by: NA	

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D **BORE 103**

Page No: 1 of 2 Date: 5 and 8 June 2020 Ground Surface Level: RL33.2m*

fuil indan	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
)		33.2					
	SILTY SAND (SM) loose, brown-dark brown, fine to coarse grained sand (topsoil) 	-			0.5		0.00
-	SILTY CLAY (CH)		HH	S	0.95		6,6,8 N=14
-	- stiff, brown mottled grey and white	32.0-	HH	_	1.5		
-	- hard		HH	U	1.85		pp>600
-		31.0-	HH				
-	- orange-brown	-	HH		3.0		and a start of
T	CLAYEY SAND (SC)	30.0		S	3.24		4,30/90mm
-	 very dense, brown and orange-brown, fine grained sand, 4.0m to 4.5m bands 	n, clay	//				
		29.0-					
ſ	SANDSTONE (SW) - extremely low strength, orange-brown, fine to medium grained			S	4.6 4.72		30/120mm
	- extremely low strength, orange-brown, line to medium grained	28.0			4./2		
-		-					
1	- brown mottled grey-white	27.0		S	6.0 6.13		30/130mm
		-					
1		26.0					
			_	S	7.5 7.63		30/120mm
		25.0-			1.00		
					9.0		and a second
		24.0	_	S	9.09		30/90mm
		=					
		23.0					
			-	S	10.5		5,30/120mm
		22.0-	-		10.77		
1		22.0					
E L F	Bulk Sample S Standard Penetro Undisturbed Tube (50mm diameter) SPT Hammer Bouncin Pocket Penetrometer Test (kPa) () No Sample Recov	g very		C Is(50 (d) (a)	Diametra	ad Test Re al Point Lo	esult (MPa) ad Strength Tes trength Test
	Environmental Sample A Asbestos Sample Hydrapower Scout	8		Logo	ed By: PZ		
-	ing Method: Auger to 3.0m, casing to 3.0m, then washbore			-099			
	undwater: No free groundwater encountered during auger drilling						

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D **BORE 103**

Page No: 2 of 2 Date: 5 and 8 June 2020 Ground Surface Level: RL33.2m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
- 12- -	SANDSTONE (SW) - extremely low strength, brown mottled grey-white, fine to medium grained - 12.5m to 13.0m, clayey sand bands	21.0		S	12.0 12.1		30/100mm
13		20.0		S	13.5 13.59		30/90mm
5 1 1	MUDSTONE (XW) - extremely low strength, dark grey	19.0 18.0 		S	15.0 15.41		12,27,30/110mr
16 - 7 7	SILTY CLAY (CH) - hard, dark grey - very stiff, dark grey	17.0- 16.0-	HH	S	16.5 16.95 17.0		8,17,24 N=41
8	MUDSTONE (XW) - extremely low strength, dark grey	15.0	HH HH	S	17.4 18.0 18.43		pp=350 17,23,30/130mi
0	SILTSTONE (DW) - very low to low strength, grey	14.0		S	20.0 20.2		15,30/50mm
1	MUDSTONE (XW) - extremely low strength, grey End of Bore at 21.95 m	12.0-		S	21.5 21.95		15,21,26 N=47
23-							
D B U pp E	Disturbed SampleVVane Shear Strength, UncorrectBulk SampleSStandard Penetrometer Test (SUndisturbed Tube (50mm diameter)SPTHammer BouncingPocket Penetrometer Test (kPa)()No Sample RecoveryEnvironmental SampleAAsbestos Sample)	C Is(50 (d) (a)	Diame	Load Test Re	ad Strength Test
Dri Gr	g: Hydrapower Scout illing Method: Auger to 3.0m, casing to 3.0m, then washbore oundwater: No free groundwater encountered during auger drilling marks: *Approximate ground surface level estimated from a contour plan supplied by Economic Dev	elopment	Queensla		jed By: P	ΡΖ	

BORE 104

Page No: 1 of 2 Date: 2 June 2020

Ground Surface Level: RL33.0m*

Butler Partners

	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results
0-		33.0	3.150			
-	SILTY CLAY (CH) - stiff, brown, trace of fine to coarse grained sand (topsoil)	1 :	HH		0.5	
1_	- stiff	32.0-		S	0.95	5,6,9 N=15
-	- very stiff, pale grey-brown		HH		1.5	
2-			HH	S	1.95	9,11,15 N=26
2-		31.0-			1.95	
-		-	HH			
3-	SILTY CLAY (CH)	30.0-	HH	U	3.0	pp>600
-	- hard, pale grey-brown	-	HH		3.45	
4-	- red	29.0-				
-		-	HH	U	4.5	pp>600
5-	SANDSTONE (XW)	28.0-		0	4.95	pp-000
-	- extremely low strength, brown, fine to coarse grained	-				
6-		27.0-		S	6.0	20/11/0
-		-	-	0	6.14	30/140mm
7-		26.0-	•			
=		-			7.5	
8-		25.0-		S	7.63	30/130mm
-					1. 4	
E		24.0-			0.0	
1		24.0		S	9.0	30/130mm
-						
)+	SILTY CLAY (CH)	23.0	ŦŦ		Street,	
-	- hard, grey mottled brown	-	HH	U	10.5	pp>600
1-		22.0			10.95	
7			TT			
			mental Samp	ole		oad Test Result (MPa)
Bulk	Sample () No Sample Recovery ()	Jp Pushtub C NMLC Co	e Sample oring		(d) Diametr (a) Axial Te	est
ocke	et Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)				(i) Lump T	est
g: H	ydrapower Scout				Logged by:	NA
illing	Method: Auger to 2.5m, casing to 3.0m, then washbore					

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D

BORE 104

Page No: 2 of 2

Date: 2 June 2020 Ground Surface Level: RL33.0m*

Depth (m)	Description		RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results
12	SILTY CLAY (CH) - hard, grey mottled brown SANDSTONE (XW) - extremely low strength, brown, fine to coarse grained		21.0	H H H	U	- 12.0 - 12.45	pp>600
13	- extremely low strength, brown, fine to coarse grained SILTY CLAY (CH) - hard, grey, trace of fine grained sand MUDSTONE (XW) - extremely low strength, grey		20.0		S	— 13.5 — 13.95	10,17,30 N=47
5 1 1 1					S	— 15.0 — 15.43	15,22,30/130mm
6			17.0		S	— 16.5 — 16.95	16,22,30 N=52
8	End of Bore at 18.45 m		15.0-		S	— 18.0 — 18.45	13,21,30 N=51
9			14.0				
0			13.0				
2			11.0				
Disturi Bulk S	urbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) bed Sample HB SPT Hammer Bouncing rample () No Sample Recovery t Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)	E Up C	10.0 Environm Pushtube NMLC Cor	Sample	nple		
rilling round	drapower Scout Method: Auger to 2.5m, casing to 3.0m, then washbore water: No free groundwater encountered during auger drilling s: *Approximate ground surface level estimated from a contour plan supplied by E	0000	nic Dovolo	oment O	loopdor	Logged by	y: NA

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D

BORE 105

Page No: 1 of 2 Date: 9 June 2020

Ground Surface Level: RL32.0m*

furt motor	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater
0-		32.0					NT.F
-	SILTY CLAY (CH) - hard, brown, trace of fine grained sand		11		0.5		
1	- grey			S	0.75	pp>600	
1	9107	31.0-	HH		0.000	Cement	
-		-	HH	S	1.5	pp>600	
2-		30.0-	HH	-	1.8	pp 000	
-	CLAYEY SAND (SC) - medium dense, orange-brown mottled grey and white, fine to coarse grained	1	//				
3-	sand	29.0-			3.0	9,7,8	
-	SILTY CLAY (CH)		TT	S	3.45	9,7,8 N=15	
-	- stiff to very stiff, grey		HH		0.10		
4-		28.0-	HH			Casing	
1	SILTY CLAY (CI)		HH	U	4.5	pp>600	
5-	- hard, dark grey, with minor slickensides	27.0-	HH	0	4.75	Backfill	
-		-	HH.			Dackill	R K
6-		26.0-	HH		6.0		
-		20.0	HH.	U	6.3	pp>600	
-			##				
7-		25.0-				Bentonite	
-	SILTY CLAY (CH)			U	7.5	pp>600	
8-	- hard, dark grey	24.0-	TT	0	7.8	pp- 000	
-		-	HH				
9-	CLAYEY SAND (SC)	220	11		0.0		
Ē	- very dense, brown mottled orange-brown and grey	23.0-	//	S	9.0	28,30/80mm	n
+	SILTY CLAY (CI)		THE			Sand - Screen -	
0-	- hard, brown	22.0-	TH	U	10.0		
-	CLAYEY SILT (MH)		TH	0	10.45	pp>600	
-	- hard, grey and brown	21.0-	111	U	10.5	pp>600	
-		-					
-		1	4741				E
	turbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) E bed Sample HB SPT Hammer Bouncing Up		mental Sam e Sample	ple	Contraction of the second second	t Load Test Re letral Test	esult (MP
Bulk S	ample () No Sample Recovery C	NMLC Co			(a) Axial	Test	
ocket	t Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)				(i) Lum	o Test	
g: Hy	drapower Scout				Logged	by: PZ	
	Method: Auger to 3.0m, casing to 3.0m, then washbore					2251 - 110E.	

Remarks: *Approximate ground surface level estimated from a contour plan supplied by Economic Development Queensland

0.00

Client: Economic Development Queensland Project: Oxley PDA - Stage 1A Location: Blackheath Road, Oxley Project No: 018-118D

BORE 105

Page No: 2 of 2 Date: 9 June 2020 Ground Surface Level: RL32.0m*

Depth (m)	Description	1	KL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
12-	SILTY CLAY (CH) - hard, grey	20	11111		U	- 12.0 - 12.35	pp>600	
13_ - - 14_ -	MUDSTONE (XW) - extremely low strength, grey	19		H H H H	S	- 13.5 - 13.92	13,25,30 /120mm	
15	End of Bore at 15.25 m	17	7.0		S	- 15.0 - 15.25	17,30/100n	
16 - - - - 17 -		16	1111					
18-		14						
19		13	3.0					
20-		12						
21		11						
23-		g).0					
D Distu B Bulk	sturbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) urbed Sample HB SPT Hammer Bouncing Sample () No Sample Recovery tet Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)	Up Pus		ental San Sample ing	nple	(d) Dian (a) Axia	nt Load Test R netral Test nl Test np Test	.esult (MPa)
Drillin Groun	Hydrapower Scout g Method: Auger to 3.0m, casing to 3.0m, then washbore dwater: No free groundwater encountered during auger drilling rks: *Approximate ground surface level estimated from a contour plan supplied by Economic	Development	Quee	nsland		Logged	l by: PZ	

Notes on Description and Classification of Soil

The methods of description and classification of soils used in this report are generally based on Australian Standard AS1726-1993 Geotechnical Site Investigations.

Soil description is based on an assessment of disturbed samples, as recovered from bores and excavations, or from undisturbed materials as seen in excavations and exposures or in undisturbed samples. Descriptions given on report sheets are an interpretation of the conditions encountered at the time of investigation.

In the case of cone or piezocone penetrometer tests, actual soil samples are not recovered and soil description is inferred based on published correlations, past experience and comparison with bore and/or test pit data (if available).

Soil classification is based on the particle size distribution of the soil and the plasticity of the portion of the material finer than 0.425mm. The description of particle size distribution and plasticity is based on the results of visual field estimation, laboratory testing or both. When assessed in the field, the properties of the soil are estimated; precise description will always require laboratory testing to define soil properties.

Where soil can be clearly identified as FILL this will be noted as the main soil type followed by a description of the composition of the fill (e.g. FILL – yellow-brown, fine to coarse grained gravelly clay fill with concrete rubble). If the soil is assessed as possibly being fill this will be noted as an additional observation.

Soils are generally described using the following sequence of terms. In certain instances, not all of the terms will be included in the soil description.

MAIN SOIL TYPE (CLASSIFICATION GROUP SYMBOL)

- strength/density, colour, structure/grain size, secondary and minor components, additional observations

Information on the definition of descriptive and classification terms follows.

SOIL TYPE and CLASSIFICATION GROUP SYMBOLS

	Major Divisions	Particle Size	Classification Group Symbol	Typical Names
	BOULDERS	>200mm		
	COBBLES	63 – 200mm		
	GRAVELS		GW	Well graded gravels, gravel-sand mixtures little or no fines.
	(more than half of coarse fraction is larger	Coarse: 20 – 63mm Medium: 6 – 20mm	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels.
COARSE	than 2.36mm)	Fine: 2.36 – 6mm	GM	Silty gravels, gravel-sand-silt mixtures.
GRAINED SOILS			GC	Clayey gravels, gravel-sand-clay mixtures.
(more than half of material is larger than	SANDS		SW	Well graded sands, gravelly sands, little or no fines.
0.075mm)	(more than half of coarse fraction is	Coarse: 0.6 – 2.36mm Medium: 0.2 – 0.6mm	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands.
	smaller than 2.36mm)	Fine: 0.075 – 0.2mm	SM	Silty sands, sand-silt mixtures.
			SC	Clayey sands, sand-clay mixtures.
	SILTS & CLAYS		ML	Inorganic silts and very fine sands, silty/clayey fine sands or clayey silts with low plasticity.
	(liquid limit <50%)		CL and CI	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.
FINE			OL	Organic silts and organic silty clays of low plasticity.
GRAINED SOILS (more than half of			МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils.
material is smaller than 0.075mm)	SILTS & CLAYS (liquid limit >50%)		CH	Inorganic clays of high plasticity.
o.o.o.			ОН	Organic clays of medium to high plasticity, organic silts.
	HIGHLY ORGANIC SOILS		Pt	Peat and other highly organic soils.

PLASTICITY CHART FOR CLASSIFICATION OF FINE GRAINED SOILS

LIQUID LIMIT (%)

(Reference: Australian Standard AS1726-1993 Geotechnical site investigations)

DESCRIPTIVE TERMS FOR MATERIAL PROPORTIONS

	Coarse Grained Soils	Fine Grained Soils				
% Fines	Modifier	% Coarse	Modifier			
<5	Omit, or use 'trace'	<15	Omit, or use trace.			
5-12	Describe as 'with clay/silt' as applicable.	15-30	Describe as 'with sand/gravel' as applicable.			
>12	Prefix soil as 'silty/clayey' as applicable	>30	Prefix soil as 'sandy/gravelly' as applicable.			

STRENGTH TERMS - COHESIVE SOILS

Strength Term	Undrained Shear Strength	Field Guide to Strength			
Very soft	<12kPa	Exudes between the fingers when squeezed in hand.			
Soft	12 – 25kPa	Can be moulded by light finger pressure.			
Firm	25 – 50kPa	Can be moulded by strong finger pressure.			
Stiff	50 – 100kPa	Cannot be moulded by fingers, can be indented by thumb.			
Very stiff	100 – 200kPa	Can be indented by thumb nail.			
Hard	>200kPa	Can be indented with difficulty by thumb nail.			

DENSITY TERMS - NON COHESIVE SOILS

Density Term	Density Index	SPT "N"	CPT Cone Resistance
Very loose	<15%	0-5	0 – 2MPa
Loose	15 - 35%	5 - 10	2 – 5MPa
Medium dense	35 - 65%	10 - 30	5 – 15MPa
Dense	65 - 85%	30 - 50	15 – 25MPa
Very dense	>85%	>50	>25MPa

COLOUR

The colour of a soil will generally be described in a 'moist' condition using simple colour terms (e.g. black, grey, red, brown etc.) modified as necessary by "pale", "dark", "light" or "mottled". Borderline colours will be described as a combination of colours (e.g. grey-brown).

EXAMPLE

e.g. CLAYEY SAND (SC) - medium dense, grey-brown, fine to medium grained with silt.

Indicates a medium dense, grey-brown, fine to medium grained clayey sand with silt.

Notes on Description and Classification of Rock

The methods of description and classification of rock used in this report are generally based on Australian Standard AS1726-1993 Geotechnical site investigations.

Rock description is based on an assessment of disturbed samples, as recovered from bores and excavations, or from undisturbed materials as seen in excavations and exposures, or in core samples. Descriptions given on report sheets are an interpretation of the conditions encountered at the time of investigation.

Notes outlining the method and terminology adopted for the description of rock defects are given below, however, detailed information on defects can generally only be determined where rock core is taken, or excavations or exposures allow detailed observation and measurement.

Rocks are generally described using the following sequence of terms. In certain instances not all of the terms will be included in the rock description.

ROCK TYPE (WEATHERING SYMBOL), strength, colour, grain size, defect frequency

Information on the definition of descriptive and classification terms follows.

ROCK TYPE

In general, simple rock names are used rather than precise geological classifications.

ROCK MATERIALS WEATHERING CLASSIFICATION

Term	Weathering Symbol	Definition
Residual soil	RS	Soil developed from extremely weathered rock; the mass structure and substance fabrics are no longer evident; there is a large change in volume but the soil has not been significantly transported.
Extremely weathered	xw	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded in water.
Distinctly weathered *	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by ironstaining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
- Highly weathered	HW	Rock substance affected by weathering to the extent that limonite staining or bleaching affects the whole of the rock substance and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock, usually as a result of iron leaching or deposition. The colour and strength of the original fresh rock substance is no longer recognisable.
- Moderately weathered	MW	Rock substance affected by weathering to the extent that staining extends throughout the whole of the rock substance and the original colour of the fresh rock may be no longer recognisable.
Slightly weathered	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh	FR	Rock shows no sign of decomposition or staining.

* Subdivision of this weathering grade into highly and moderately may be used where applicable.

STRENGTH OF ROCK MATERIAL

Term	Symbol	Point Load Index I₅ (50)	Field Guide To Strength
Extremely low	EL	<0.03MPa	Easily remoulded by hand to a material with soil properties.
Very low	VL	0.03 – 0.1MPa	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low	L	0.1 – 0.3MPa	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	М	0.3 – 1.0MPa	Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High	н	1.0 – 3.0MPa	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very high	VH	3.0 - 10.0MPa	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely high	EH	>10MPa	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Notes:

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weaker due to the effect of rock defects.

- 2. The field guide visual assessment for rock strength may be used for preliminary assessment or when point load testing is not available.
- 3. Anisotropy of rock may affect the field assessment of strength.

COLOUR

The colour of a rock will generally be described in a 'moist' condition using simple colour terms (e.g. black, grey, red, brown, etc) modified as necessary by 'pale', 'dark', 'light' or 'mottled'. Borderline colours will be described as a combination of colours (e.g. grey-brown).

GRAIN SIZE

Descriptive Term	Particle Size Range
Coarse grained	0.6 – 2.0mm
Medium grained	0.2 – 0.6mm
Fine grained	0.06 – 0.2mm

DEFECT FREQUENCY

Where appropriate, a defect frequency may be recorded as part of the rock description and will be expressed as the number of natural (or interpreted natural) defects present in an equivalent one metre length of core; by use of the following defect frequency descriptive terms; or both. The descriptive terms refer to the spacing of all types of natural defects along which the rock is discontinuous and include, bedding plane partings, joints and other rock defects, but excludes known artificial fractures such as drilling breaks.

Defect Frequency	Description
Fragmented	Rock core is comprised primarily of fragments of length less than 20mm, and mostly of width less than the core diameter.
Highly Fractured	Core lengths are generally less than 20mm to 40mm with occasional fragments.
Fractured	Core lengths are mainly 30mm to 100mm with occasional shorter and longer sections.
Fractured to Slightly Fractured	Core lengths are mainly 100mm to 300mm with occasional shorter to longer sections.
Slightly Fractured	Core lengths are generally 300mm to 1,000mm with occasional longer sections and occasional sections of 100mm to 300mm.
Unbroken	The core does not contain any fractures.

EXAMPLE

e.g. SANDSTONE (XW) - low strength, pale brown, fine to coarse grained, slightly fractured.

ROCK DEFECT LOGGING

Defects are discontinuities in the rock mass and include joints, sheared zones, cleavages and bedding partings. The ability to observe and log defects will depend on the investigation methodology. Defects logged in core are described using the abbreviations noted in the following tables.

The *depth* noted in the description is measured in metres from the ground surface, the *defect angle* is measured in degrees from horizontal, and the defect *thickness* is measured normal to the plane of the defect and is in millimetres (unless otherwise noted).

Defects are generally described using the following sequence of terms:

Depth, Defect Type, Defect Angle (dip), Surface Roughness, Infill, Thickness

DEFECT TYPE

В	- Bedding
J	- Joint
S	- Shear Zone
С	- Crushed Zone

SURFACE ROUGHNESS

i	- rough or irregular, stepped
ii	- smooth, stepped
iii	- slickensided, stepped
iv	- rough or irregular, undulating
V	- smooth, undulating
vi	 slickensided, undulating
vii	- rough or irregular, planar
viii	- smooth planar
ix	- slickensided, planar

INFILL

Infill refers to secondary minerals or other materials formed on the surface of the defect and some common descriptions are given in the following table together with their abbreviations.

Ls	- limonite staining
Fe	- iron staining
CI	- clay
Mn	- manganese staining
Qtz	- quartz
Ca	- calcite
Clean	- no visible infill

EXAMPLE

3.59m, J, 90, vii, Ls, 1mm

indicates a joint at 3.59m depth that is at 90° to horizontal (i.e. vertical), is rough or irregular and planar, limonite stained and 1mm thick.

Groundwater Assessment Oxley PDA - Stage 1A Blackheath Road, Oxley

APPENDIX B PREVIOUS BORE REPORT SHEETS

Project No.: 018-118D – 15 September 2020

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A BORE 1

Page No: 1 of 1 Date: 12 April 2018 Ground Surface Level: RL8.6m*

Deptn (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
0		8.6			0.0		
	SILTY CLAY (CH)		HH	Е	0.0	B1-1	
	 - firm, grey-brown with orange mottle, trace of fine grained sand, rootlets in top 50mm 		##		0.3		
		8.0-		_	0.5		
		0.0	TH	U/E		B1-2	pp=150
T			TH		0.95		
			TH				
			HH				
1			HH		1.5		3,3,5
1		7.0-	HH	S			0,0,0
1		-	ŦŦŦ	U	1.05		N=8
-		1 2	HH		1.95		143.0428
-		1.1	世世				
-	1		HH				
-	- stiff	6.0-	ŦŦ				
-		16 18	HH				
-		-	22		3.0		3,4,6
-		-		S			
-		-			3.45		N=10
_		5.0-	TT		0.40		
_		-	TT				
_			THE				
_	- firm		世刊				
			11				
		4.0-			4.5		2,2,3
		4.0-		S			
			THE		4.95		N=5
T	End of Bore at 5 m		- KI - KI-				
-							
	Disturbed Sample V Vane Shear Strength, Uncorr	rected (kPa	a)	с	NMLC C		
	Bulk Sample S Standard Penetrometer Test Undisturbed Tube (50mm diameter) SPT Hammer Bouncing	(SPT)		ls(50 (d)		oad Test Res	sult (MPa) ad Strength Tes
р	Pocket Penetrometer Test (kPa) () No Sample Recovery Environmental Sample A Asbestos Sample			(a)		oint Load St	
	Hydrapower Trekker			Logg	ged By: N/	Ą	
	ing Method: Auger			1.1.1	4 A T LOT A 1997 A LOT		
	undwater: Free groundwater encountered at approximately 2.8m depth						

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A

BORE 2

Page No: 1 of 1 Date: 12 April 2018 Ground Surface Level: RL10.6m*

nehm (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
)_		10.6			0.0		
-	SILTY CLAY (CI) - stiff, grey-brown mottled		井井井井	E/B	0.4 0.5	B2-1	1
-		10.0-	HH	S	0.5		3,4,6
1-		-	HH	E	0.95 1.0	B2-2	N=10
_			HH	E	1.4	D2-2	
-	- very stiff, brown with red mottle, some ironstone	9.0-		U	1.4 1.5		pp=450
2-			HH		1.95		44-400
-			###				
-	- with zones of clayey sand	8.0-					
3-		-	HH		3.0		9,10,10
-		-	HH	S	datus ra		N=20
-		7.0-	## ##		3.45		11-20
4-	- stiff, pale grey						
-	- sun, pale grey		##				
-		6.0-	## ##	0	4.5		7,7,7
5-			HH	S	4.95		N=14
	End of Bore at 5 m	-					
) 3 1 5 9 1 5 9 1	Disturbed SampleVVane Shear Strength, UnBulk SampleSStandard Penetrometer TUndisturbed Tube (50mm diameter)SPTHammer BouncingPocket Penetrometer Test (kPa)()No Sample RecoveryEnvironmental SampleAAsbestos Sample)	C Is(50 (d) (a)	Diamet	oad Test Res	d Strength Tes
	: Hydrapower Trekker			Logg	ed By: NA	1	
Uri	Iling Method: Auger pundwater: No free groundwater encountered during drilling						

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A BORE 3

Page No: 1 of 1 Date: 11 April 2018 Ground Surface Level: RL16.0m*

-		RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
T		16.0					
-	BITUMINOUS CONCRETE		3.03.0				
-1	- 20mm thick			E	0.2	B3-1	
	PAVEMENT GRAVEL - pale brown, gravel, fine to coarse grained sand, fine to medium subangular		-	E.	0.5	D0-1	220
-/	gravel			S/E			3,3,2
- '	\ FILL	-	-	5/E	0.05	B3-2	N=5
-	- brown, silty clay	15.0-			0.95 1.0		N-5
-	- grey, silty clay, with some fine to coarse grained sand			Е		B3-3	
-					1.4		
-					1.4 1.5	6	
				U			pp=400
			1		1.95		11
+	SILTY CLAY (CI)	14.0-	HH		1.95 2.0		
-	- firm, grey with orange mottle		HH	Е		B3-4	
-		1	HH	-	2.4		
-		-	HH	_	2.6		
-			HH	Е	1.0	B3-5	
_		13.0-	HH		3.0		000
			HH	~	0,0		2,3,2
			开开	S	1.1		N=5
			开开	-	3.45		C=N
1		1.4	开开				
-		1.5	HH				
	- stiff	12.0-	TH				
-			TTT				
-			TTT		3.52		1.17
-			TTT		4.5		3,4,7
_			TT	S			
		11.0-	TH		4.95		N=11
	End of Bore at 5 m	11.0-					
1	Westing and a set of the Line Providence of	1	1				
1							
	Disturbed Sample V Vane Shear Strength, Uncorrect	ed /kP	a)	с	NMLC (Coring	
	Bulk Sample S Standard Penetrometer Test (SF		-)			oad Test Res	ult (MPa)
I	Undisturbed Tube (50mm diameter) SPT Hammer Bouncing			(d)	Diamet	tral Point Loa	d Strength Tes
	Pocket Penetrometer Test (kPa) () No Sample Recovery			(a)	Axial P	oint Load Str	ength Test
	Environmental Sample A Asbestos Sample Hydrapower Trekker	_		Loge	ed By: N	A	_
-				LUGE	jeu by. N		
	ing Method: Auger undwater: No free groundwater encountered during drilling						

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A BORE 4

Page No: 1 of 1 Date: 11 April 2018 Ground Surface Level: RL14.8m*

	k	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
		14.8			0.0		
se	subangular			E	0.2	B4-1 B4-2 QC05 QC06	
_		14.0-		U/E	0.95	B4-3	pp=400
			-	E	1.4	B4-4	
		13.0-	-	S	1.95		2,3,3 N=6
		12.0-	(井)井)井)井				
			井井井井	U	3.0 3.45		pp=100
		- 11.0- -	# # # # #				
		- 10.0-		S	4.5		3,4,7 N=11
etro	overy		 a)	C Is(50 (d) (a)	Diamet	oad Test Restral Point Loa	ad Strength Te
				Logo	ed By: N	A	
mp	overy				(a)	(a) Axial P	

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A BORE 5

Page No: 1 of 1 Date: 11 April 2018 Ground Surface Level: RL32.0m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
0-		32.0		-	0.0	DE 4	
+	SANDY CLAY (CL) - dark brown, fine to coarse grained			E	0.2	B5-1	
-	SANDY CLAY (CI) - stiff, pale brown, fine grained	-		E/B S	0.5	B5-2	7,6,8
1_		31.0-			0.95 1.0		N=14
-		-		E	1.0 1.4 1.5	B5-3	
-	- pale brown with red mottled, fine grained (possibly siltstone	-			1.5		14,27,30
- 2-	- pare brown with red motified, fine gramed (possibly sinstone	- 30.0-		S	1.95		N=57
3-	SANDY CLAY (CL) - hard, pale grey, fine to coarse grained	- 29.0- - - - 28.0-		S	3.0 3.45		16,18,20 N=38
	SILTY CLAY (CI) - hard, grey	-		U	4.5		pp>600
5	End of Bore at 5 m	- 27.0-			4.95		
pp	Disturbed SampleVVane Shear Strength, UncorrectBulk SampleSStandard Penetrometer Test (SUndisturbed Tube (50mm diameter)SPTHammer BouncingPocket Penetrometer Test (kPa)()No Sample RecoveryEnvironmental SampleAAsbestos Sample)	C Is(50 (d) (a)	Diame	oad Test Res	d Strength Test
	: Hydrapower Trekker			Logg	ed By: N	IA	
	ling Method: Auger						
	undwater: No free groundwater encountered during drilling narks: *Approximate ground surface level estimated from a contour plan supplied by EDQ						

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A

BORE 6

Page No: 1 of 1 Date: 11 April 2018 Ground Surface Level: RL19.8m*

Description (III)	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
0 BITUMINOUS CONCRETE - 20mm thick PAVEMENT GRAVEL - pale brown, sandy gravel, fine to coarse grained sand, fine to medium subangular gravel FILL 1 - red, silty clay, trace of fine grained sand SANDY CLAY (CI) - stiff, red, fine to medium grained SILTY CLAY (CI) - very stiff, brown-orange mottled	19.8 - - 19.0- - - -		E E U E	0.02 0.2 0.5 1.0 1.4 1.5	B6-1 B6-2 B6-3	pp>600 5,8,12
	18.0		s	1.95 3.0 3.45		N=20 6,10,14 N=24
4	- - - 15.0 - - -		S	4.5 4.95		8,14,18 N=32
D Disturbed Sample V Vane Shear Strength, Uncorrect B Bulk Sample S Standard Penetrometer Test (SF U Undisturbed Tube (50mm diameter) SPT Hammer Bouncing pp Pocket Penetrometer Test (kPa) () No Sample Recovery E Environmental Sample A Asbestos Sample Rig: Hydrapower Trekker Drilling Method: Auger)	(d) (a)	Diamet	oad Test Res ral Point Load oint Load Stro	d Strength Test

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments **Location:** Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118A BORE 7

Page No: 1 of 1 Date: 12 April 2018 Ground Surface Level: RL9.5m*

(III) Indan	Descr	ption	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
0			9.5			0.0		
_	SILTY CLAY (CI) - firm, brown with orange mottle, trace of f	ne grained sand	-	HH.	Е	0.0	B7-1	
-			9.0-	HH		0.4 0.5		
-			9.0-	ŦŦ	0/5	0.5	636	3,3,4
-				HH	S/E	0.95	B7-2	N=7
1-			-			0.95		
-			-	HH				
			8.0-	HH		1.5		2,2,2
_			-		S			
2-				HH		1.95		N=4
+	SILTY CLAY (CH)			THE				
-	- firm, dark grey, trace of fine grained sand	l.	7.0-	HH				
-			-	HH				
3-			-			3.0		
5			-	HH	U	5.0		150
_				ŦŦ	0	3.45		pp=150
-			6.0-	HH		5,45		
-			_	HH				
4-	- stiff, grey-brown with orange mottle			HH				
-			-	HH				
-			5.0-	HH	-	4.5		3,5,7
]			-	HH	S			
5-				II-II		4.95		N=12
-	End of Bo	re at 5 m						
-			4.0-					
					•	NINIC		
D B	Disturbed Sample Bulk Sample	V Vane Shear Strength S Standard Penetrome		9		NMLC () Point L	oad Test Re	sult (MPa)
U	Undisturbed Tube (50mm diameter) Pocket Penetrometer Test (kPa)	SPT Hammer Bouncing () No Sample Recovery	1		(d) (a)		tral Point Loa oint Load St	ad Strength Te rength Test
pp E	Environmental Sample	A Asbestos Sample			(4)		onic Load OL	. ongen root
	: Hydrapower Trekker				Logo	ged By: N	A	
	Iling Method: Auger	ing dilling						
	oundwater: No free groundwater encountered du marks: *Approximate ground surface level estima		20					

BORE 8

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A

Page No: 1 of 1 Date: 9 April 2018

Ground Surface Level: RL13.5m*

neptn (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
)	F (1)	13.5	*******		0.0		
-	FILL - brown, silty clay, trace of fine to coarse grained sand	13.0-		E	0.5	B8-1	
-				S			6,5,5 N=10
1_				E	0.95 1.0	B8-2	11-10
	- pale grey with orange mottle, silty clay, trace of fine to coarse grained sand	12.0	-	U	1.5		pp>600
2-				E	1.95 2.0 2.3	B8-3	
-	- red, sandy clay, fine to coarse grained	11.0-			2.3		
3-	SILTY CLAY (CI)		HH.	E	3.0	B8-4	9,7,10
	- very stiff, red	10.0-		S	3.45		N=17
1		-		E	3.9	B8-5	
	- hard	-					
		9.0-	HHH	s	4.5		12,15,23
5	End of Bore at 5 m		THE		4.95		N=38
-		8.0-					
3 J op	Disturbed SampleVVane Shear Strength, UncorBulk SampleSStandard Penetrometer TestUndisturbed Tube (50mm diameter)SPTHammer BouncingPocket Penetrometer Test (kPa)()No Sample RecoveryEnvironmental SampleAAsbestos Sample	rected (kPa)	C Is(50 (d) (a)	Diamet	oad Test Res	d Strength Te
	Hydrapower Trekker			Logg	ed By: N/	Ą	
Gro	ing Method: Auger undwater: No free groundwater encountered during drilling narks: *Approximate ground surface level estimated from a contour plan supplied by EDQ						

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A BORE 9

Page No: 1 of 1 Date: 11 April 2018 Ground Surface Level: RL19.4m*

neptin (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
<u></u>		19.4	******		0.0	5-1-1-1-1-	
1	FILL - dark brown, sandy clay, fine to coarse grained, rootlets (topsoil)	-		E	0.2	B9-1	
-	- brown, silty sand	19.0-		Е		B9-2	
-	- brown, silty clay, with some fine to coarse grained sand				0.5		3,3,3
-	- brown, siny day, with some line to coarse grained sand	-		S	10000		N=6
-		-			0.95 1.1		10=0
-		-		E	1.1	B9-3	
-		18.0-		L	1.5	03-3	0.50
-		-		S	1.0		3,5,6
				3	1 95		N=11
2-					1.95 2.0		
-				E	Vecco	B9-4	
-		17.0-			2.4		
				_	2.6	D0 5	
				E	2.0	B9-5	-
					3.0		4,2,4
		16.0-		S	2 /6		N=6
		10.0		-	3.45 3.5		11-0
				Е	1. A.	B9-6	
_		-		1	3.9 4.0		
_		-		Е	1,000	B9-7	
-	SILTY CLAY (CI)	15.0-	HH	E	4.3	B9-8	
_	- hard, red-brown mottled	-	HH		4.5		
-			ĦĦ	U	1.1		pp>600
;			##		4.95		
-	End of Bore at 5 m		0				
-		14.0-					
p	Disturbed SampleVVane Shear Strength,Bulk SampleSStandard PenetrometerUndisturbed Tube (50mm diameter)SPTHammer BouncingPocket Penetrometer Test (kPa)()No Sample RecoveryEnvironmental SampleAAsbestos Sample	Uncorrected (kPa er Test (SPT))	C Is(50 (d) (a)	Diame	oad Test Res	d Strength Tes
Rig:	Hydrapower Trekker			Logg	jed By: N	A	
	ling Method: Auger						
Gro	undwater: No free groundwater encountered during drilling						

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A BORE 10

Page No: 1 of 1 Date: 9 April 2018 Ground Surface Level: RL13.2m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
0	FILL - pale brown, gravelly sandy clay, fine to coarse grained sand, fine subangular gravel - brown, sandy silt, fine to coarse grained	13.2		E/B E	0.0 0.3 0.5	B10-1 B10-2	4,5,4
	SANDY CLAY (CL) - stiff, orange, fine to medium grained	- 12.0-		E/S E	0.95 1.0	B10-3 B10-4	N=9
				E/S	1.4 1.5 1.95	B10-5	3,5,4 N=9
1 1 1 1 1	- brown, silty clay, trace of fine to coarse grained sand	11.0- - -		E	2.7	B10-6	
	SILTY CLAY (CL) - stiff to very stiff, grey-brown, with trace of fine to coarse grained sand, trace of charcoal	10.0- - -		S	3.45 3.5	B10-7	5,7,9 N=16
		- 9.0 - -		U	4.0 4.5		pp=350
	End of Bore at 5 m	- 8.0—	HH.		4.95		
	Disturbed Sample V Vane Shear Strength, Uncorrect Bulk Sample S Standard Penetrometer Test (SF Undisturbed Tube (50mm diameter) SPT Hammer Bouncing Pocket Penetrometer Test (kPa) () No Sample Recovery Environmental Sample A Asbestos Sample)	C Is(50) (d) (a)	Diamet	oad Test Res	d Strength Tes
Dril	: Hydrapower Trekker ling Method: Auger undwater: No free groundwater encountered during drilling narks: *Approximate ground surface level estimated from a contour plan supplied by EDQ			Logg	ed By: N	Ą	

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A BORE 11

Page No: 1 of 1 Date: 10 April 2018 Ground Surface Level: RL14.5m*

(iii) indan	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
)_		14.5	*****		0.0	B11-1	
4	FILL - pale brown, clayey gravel, fine to coarse subangular gravel, fibro fragments	-		E	0.2	B11-1 QC03 QC04	
_	around building slab (GRAV-B11)	-		Е		B11-2	
4	- dark brown, gravelly clay, fine subangular gravel	14.0-			0.5		6,5,5
-	- brown, silty clay, with some fine to coarse grained sand			S/E		B11-3	
_		1		-	0.95		N=10
-		7			1.2		
-		-		Е		B11-4	
+	SILTY CLAY	13.0-			1.5		5,5,7
-	- stiff, grey, interbedded with sandy clay		HH	S	1		N-10
-	a de la companya de l		HH		1.95 2.0		N=12
-			HH	Е		B11-5	
-		12.0-	HH		2.4		
+	- hard	- 12.0-	HH				
-	- haid		HH				
-			HH		3.0		
-			HH	U			pp>600
-		11.0-	开开		3.45		A.M
-			井井				
-							
+	SANDY CLAY (CL)						
-	- hard, dark brown						
-		10.0-			4.5		10 10 01
-		-		S			13,18,21
-		-		5	4.95		N=39
+	End of Bore at 5 m	-			4.90		
-		-					
-		9.0-					
)	Disturbed Sample V Vane Shear Strength, Uncorrec	ted (kPa)	с	NMLC (Coring	
\$	Bulk Sample S Standard Penetrometer Test (S		/	ls(50) Point L	oad Test Res	
1	Undisturbed Tube (50mm diameter) SPT Hammer Bouncing Pocket Penetrometer Test (kPa) () No Sample Recovery			(d) (a)		ral Point Loa oint Load Str	d Strength Te
p	Pocket Penetrometer Test (kPa) () No Sample Recovery Environmental Sample A Asbestos Sample			(a)		onit Load St	engui leat
Rig	: Hydrapower Trekker			Logg	jed By: N	A	
	Iling Method: Auger						
Gro	oundwater: No free groundwater encountered during drilling						

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A

BORE 12

Page No: 1 of 1 Date: 9 April 2018 Ground Surface Level: RL18.5m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
0-		18.5			0.0		
-	SILTY CLAY (CI) - stiff to very stiff, red-brown	18.0-		B/E	0.0	B12-1	
1			####	U	0.95 1.0		pp=250
-1		-		E		B12-2	
		17.0-		S	1.4 1.5		4,7,9
2	- very stiff, brown				1.95		N=16
3_				S	3.0 3.45		6,7,14 N=22
4-	- pale brown						
		14.0-		S	4.5		6,11,14
5	End of Bore at 5 m		1F1F		4.95		N=25
D B U pp E	Disturbed SampleVVane Shear Strength, UndBulk SampleSStandard Penetrometer ToUndisturbed Tube (50mm diameter)SPTHammer BouncingPocket Penetrometer Test (kPa)()No Sample RecoveryEnvironmental SampleAAsbestos Sample)	C Is(50 (d) (a)	Diamet	oad Test Res	d Strength Test
Dri Gro	 Hydrapower Trekker Iling Method: Auger oundwater: No free groundwater encountered during drilling marks: *Approximate ground surface level estimated from a contour plan supplied by EDQ 			Logg	ed By: NA	Ą	

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A BORE 13

Page No: 1 of 1 Date: 10 April 2018 Ground Surface Level: RL24.8m*

neptn (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
0-		24.8			1		
	BITUMINOUS CONCRETE		0°0'0°0		0.2		
1	- 20mm thick	1 -		Е	0.2	B13-1 QC01 QC02	
-	PAVEMENT GRAVEL - pale brown, sandy gravel, fine to coarse grained sand, fine to medium	-		-	0.5	QC02	4,5,6
-	subangular gravel	-		S			4,0,0
-	FILL	24.0-		0	0.05		N=11
1-	- brown, silty clay				0.95 1.0		
-	- dark grey, silty clay	-		E	4.0	B13-2	
-		-			1.3		· · · · · ·
-					1.5		3,14,21
1	SILTY SAND (SC)	23.0-		S			1.00
_	- dense, pale brown, fine to medium grained			-	1.95		N=35
				1			
1		-					
1		-					
-		22.0-					
3-		-			3.0		20,30,21
-				S			
-		1.4			3.45		N=51
-		-			0.40		
_		21.0-					
_		_					
1							
1					4.5		
-				U			
-		20.0-		0	105		pp>600
+	E 1/2				4.95		
-	End of Bore at 5 m	-					
-							
_							
)	Disturbed Sample V Vane Shear Strength, Uncorrect	ted (kPa)	С	NMLC	Coring	
3	Bulk Sample S Standard Penetrometer Test (S	PT)				oad Test Res	
J	Undisturbed Tube (50mm diameter) SPT Hammer Bouncing Pocket Penetrometer Test (kPa) () No Sample Recovery			(d)		tral Point Loa Point Load St	d Strength Tes
p	Pocket Penetrometer Test (kPa) () No Sample Recovery Environmental Sample A Asbestos Sample			(a)	AXIAI	onit Load Su	engui rest
	g: Hydrapower Trekker			Logo	ed By: N	A	
	illing Method: Auger						
	oundwater: No free groundwater encountered during drilling						

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A

BORE 14

Page No: 1 of 1 Date: 10 April 2018 Ground Surface Level: RL16.0m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Sample ID	Test Results
0-		16.0			0.02		
	BITUMINOUS CONCRETE - 20mm thick		3.2.2.2	E	0.02	B14-1	
	PAVEMENT GRAVEL - pale brown, sandy gravel, fine to coarse grained sand, fine to medium subangular gravel			E U	0.5 0.7	B14-2	
-	FILL - brown, silty clay	15.0-		U/E	0.95	B14-3	pp>600
1	- pale grey, sandy clay, fine to coarse grained, trace of fine to medium subangular gravel	10.0-		E	1.1	B14-4	
	CLAYEY SAND (SC) - very dense, orange, fine to medium grained			S	1.5 1.775		18,30/125mm
2-	SILTY CLAY (CL) - very stiff, grey with orange zones, trace of fine to coarse grained sand	14.0- -	井井井井		1.775		
3-		13.0-		S	3.0		18,15,14 N=29
4-	- hard, grey	- - 12.0-			3.45)-20
		-		S	4.5		15,25,30/ 130mm
5-	End of Bore at 5 m	- 11.0 -	ŦŦ		4.93		
D B U pp E	Disturbed Sample V Vane Shear Strength, Uncorrect Bulk Sample S Standard Penetrometer Test (SP Undisturbed Tube (50mm diameter) SPT Hammer Bouncing Pocket Penetrometer Test (kPa) () No Sample Recovery Environmental Sample A Asbestos Sample)	C Is(50) (d) (a)	Diamet	oad Test Res	d Strength Test
	: Hydrapower Trekker			Logg	ed By: NA	A Contraction of the second se	
	Iling Method: Auger pundwater: No free groundwater encountered during drilling						
	narks: *Approximate ground surface level estimated from a contour plan supplied by EDQ						

Client: Economic Development Queensland Project: Former Oxley Secondary College Location: Blackheath Road, Oxley Project No: 018-118A BORE 15

Page No: 1 of 1 Date: 10 April 2018 Ground Surface Level: RL24.2m*

lium grained, rootlets (topsoil) of fine to coarse grained sand ium grained		24.2 23.0- 		E E/B U E	0.0 0.2 0.5 0.95 1.0	B15-1 B15-2 B15-3	pp>600
of fine to coarse grained sand	2	- - 23.0 - -		U			pp>600
ium grained	2	- - 23.0 — -			0.95 1.0	B15-3	pp>600
ium grained	2	23.0-		Е		B15-3	
ium grained		-	111		14	DIGG	
· ·		-		E	1.4 1.5 1.78		14,30/130mm
	2	- 2.0-					
grey with orange mottle							
	2	- 1.0-	-	S	3.0 3.24		19,30/90mm
		1					
le	24	20.0-					
		-		s	4.5		13,22,25
End of Bore at 5 m	11	9.0-	ĦŦ		4.95		N=47
diameter) S Standard Pene SPT Hammer Bound (kPa) () No Sample Red	etrometer Test (SPT) cing covery)	C Is(50 (d) (a)) Point L Diamet	oad Test Restral Point Loa	d Strength Test
				Logg	ed By: N	A	
	le End of Bore at 5 m V Vane Shear St S Standard Pene diameter) SPT Hammer Bound (kPa) () No Sample Rei A Asbestos Sam	grey with orange mottle	grey with orange mottle grey with orange mottle 21.0- 21.0- 21.0- 21.0- 20.0- 20.	grey with orange mottle 22.0- 1 grey with orange mottle 21.0- 21.0- le 20.0- 1 End of Bore at 5 m 19.0- 19.0- diameter) S Standard Penetrometer Test (SPT) SPT Hammer Bouncing (kPa) () No Sample Recovery A Asbestos Sample	grey with orange mottle 22.0 grey with orange mottle 21.0 le 20.0 grey with orange mottle 19.0 le 19.0 with orange mottle 19.0 diameter) S Standard Penetrometer Test (SPT) s Standard Penetrometer Test (SPT) diameter) A Asbestos Sample	grey with orange mottle 22.0 3.0 21.0 S 3.24 21.0 S 3.24 1e 20.0 4.5 End of Bore at 5 m 19.0 4.5 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) C NMLC 0 1g.0 S Standard Penetrometer Test (SPT) Standard Penetrometer Test (SPT) 1g.0 S Standard Penetrometer Test (SPT) Standard Penetrometer Test (SPT) 1g.0 S Standard Penetrometer Test (SPT) Standard Pene	grey with orange mottle 22.0 3.0 grey with orange mottle 21.0 \$ le 20.0 \$ grey with orange mottle 21.0 le 20.0 End of Bore at 5 m 19.0 S Standard Penetrometer Test (SPT) s Standard Penetrometer Test (SPT) diameter) SPT Hammer Bouncing (NPa) () No Sample Recovery A Asbestos Sample

воке керокт

Project No: 018-118B

Location: Former Oxley Secondary College, Blackheath Road, Oxley

Project: Proposed Retirement Village and Child Care Developments

Client: Economic Development Queensland

BORE 16

Page No: 1 of 1 Date: 24 September 2018

Ground Surface Level: RL21.3m*

Butler Partnersa . geo-environmental . groundwater

Remarks: *Approximate ground surface level estimated from a contour plan supplied by Economic Development Queensland Groundwater: No free groundwater encountered during drilling Drilling Method: Auger Logged by: NA Rig: Jacro 350 (1) 1saT qmuJ pp Pocket Penetrometer Test (kPa) Vane Shear Strength, Uncorrected (kPa) ٨ (9) **NMLC Coring test IsixA** () Э No Sample Recovery Bulk Sample В **Diametral Test** (p) Pushtube Sample dn SPT Hammer Bouncing Disturbed Sample a ЯH Is(50) Point Load Test Result (MPa) Environmental Sample Ε (T92) fenetration Test (SPT) S (sib mm02) slqms2 sduT bsdrutsibnU Π 13-End of Bore at 12.28 m 12.28 -0'6 S mm0£1\05,85 15-15.0 10.01 -11 10.64 S mm041\05 10.5 0.11 -01 extremely low strength, dark grey 6'53 15.0-S mm08\0E,71 (WX) **ENOTSOUR** 0.6 -6 13.0. **S6'**L -8 Π 009<dd **G.**7 -0.41 -1 979 95=N 12.0 S 10,15,20 0.0 -9 - dark grey 0.91 -9 96'7 Π 009<dd 5.4 H-H-0.71 -7 3.45 0E=N -0.81 S 91,41,8 3.0 - hard, pale grey -8 pale brown with yellow mottle -0'61 96'L -2 Π 064=qg Hitz yrev -G.1 20°0-- stiff, grey and brown mottled, trace of fine grained sand -1 96'0 21=N SILTY CLAY (CH) S 3'9'8 - brown, fine to coarse grained (topsoil) 9.0 (JO) YAJO YUNAS -0 21.3 Lithology Depth Sample Depth (m) 믿 Test Results Sample Type m (m) Description

Client: Economic Development Queensland

Project: Broadscale Slope Stability Assessment

Location: Former Oxley Secondary College, Blackheath Road, Oxley

Project No: 018-118B

Page No: 1 of 1 Date: 24 September 2018 Ground Surface Level: RL17.1m*

ed sand		17.1 16.0 15.0 14.0 12.0 11.0 9.0		S U S U U	 0.5 0.95 1.5 1.95 3.0 3.45 4.5 4.95 6.0 6.45 7.5 7.95 	4,5,5 N=10 pp>600 7,8,11 N=19 pp>600 13,18,22 N=40 pp>600
ed sand		15.0 14.0 13.0 12.0 11.0		U S U	 0.95 1.5 1.95 3.0 3.45 4.5 4.95 6.0 6.45 7.5 	N=10 pp>600 7,8,11 N=19 pp>600 13,18,22 N=40
ed sand		15.0 14.0 13.0 12.0 11.0		U S U	 0.95 1.5 1.95 3.0 3.45 4.5 4.95 6.0 6.45 7.5 	N=10 pp>600 7,8,11 N=19 pp>600 13,18,22 N=40
ed sand		15.0 14.0 13.0 12.0 11.0		S U S	 1.5 1.95 3.0 3.45 4.5 4.95 6.0 6.45 7.5 	pp>600 7,8,11 N=19 pp>600 13,18,22 N=40
		14.0 13.0 12.0 11.0 10.0		S U S	 1.95 3.0 3.45 4.5 4.95 6.0 6.45 7.5 	7,8,11 N=19 pp>600 13,18,22 N=40
		14.0 13.0 12.0 11.0 10.0		S U S	- 3.0 - 3.45 - 4.5 - 4.95 - 6.0 - 6.45 - 7.5	7,8,11 N=19 pp>600 13,18,22 N=40
		14.0 13.0 12.0 11.0 10.0		U	- 3.45 - 4.5 - 4.95 - 6.0 - 6.45 - 7.5	N=19 pp>600 13,18,22 N=40
		13.0 12.0 11.0 11.0		U	- 3.45 - 4.5 - 4.95 - 6.0 - 6.45 - 7.5	N=19 pp>600 13,18,22 N=40
		13.0 12.0 11.0 11.0		U	- 3.45 - 4.5 - 4.95 - 6.0 - 6.45 - 7.5	N=19 pp>600 13,18,22 N=40
		12.0- 11.0- 11.0- 10.0-		S	- 4.5 - 4.95 - 6.0 - 6.45 - 7.5	pp>600 13,18,22 N=40
		12.0- 11.0- 11.0- 10.0-		S	- 4.95 - 6.0 - 6.45 - 7.5	13,18,22 N=40
		11.0		S	- 4.95 - 6.0 - 6.45 - 7.5	13,18,22 N=40
		11.0		S	- 6.0 - 6.45 - 7.5	13,18,22 N=40
		10.0			- 6.45 - 7.5	N=40
		10.0			- 6.45 - 7.5	N=40
		10.0			- 6.45 - 7.5	N=40
				U	- 7.5	pp>600
				U		pp>600
			-	U		pp>600
		9.0-				
					1.55	
		-				
avel		8.0-		S	9.0	30/50mm
	- 1	-	/ / [9.05	
		7.0-				
		-	//-	-	10.5	30/115mm
		60-	//-	S	10.615	overonim
		0.0				
		-	_	S		30/100mm
		5.0-			12.1	50/100mm
		-				
		4.0-				
Test (SPT) ng Uncorrected (kPa)		Pushtube	e Sample	nple	승규는 이번 전에 집에 집에 많이 있다.	
					Logged by	: NA
1	Ig	lg Up C	Test (SPT) E Environ Ig Up Pushtub C NMLC Co	Test (SPT) E Environmental San Ig Up Pushtube Sample C NMLC Coring	Test (SPT) E Environmental Sample G NMLC Coring	6.0 5.0 10.615 5.0 12.0 4.0 12.1 4.0 12.1 4.0 12.1 10.615 12.1 10.615 12.1 10.615 12.1 11.1 12

Client: Economic Development Queensland Project: Proposed Retirement Village and Child Care Developments Location: Former Oxley Secondary College, Blackheath Road, Oxley Project No: 018-118B

BORE 18

Page No: 1 of 1 Date: 25 September 2018 Ground Surface Level: RL38.1m*

(m) mdan	Description		RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results
0			38.1				
1	FILL - brown, silty clay, trace of fine subrounded gravel (reworked natural)		37.0		S	0.5	5,7,8 N=15
2	- brown with yellow and orange mottle				U	- 1.5 - 1.95	pp>600
			36.0			1.55	
3-	- brown with orange and red mottle		35.0		S	- 3.0 - 3.45	9,13,14 N=27
4			34.0			22/10/245	
5-			33.0		U	4.5 4.95	pp=320
6			32.0		S	6.0	7,9,10 N=19
7			31.0			0.45	IT IO
	SILTY CLAY (CI) - stiff, grey with red mottle		31.0			7.5	pp=220
8-1-1			30.0	HH	U	7.95	pp-220
9-	- very stiff, with bands of fine subangular gravel		29.0	HH		9.0	7,9,11
			23.0	HH	S	9.45	N=20
0-			28.0	HH	U	10.5	pp>600
1-	MUDSTONE (XW) - extremely low strength, pale brown, with slickensides		27.0		S	10.55 10.82	21,30/120mm
	- very low strength		27.0-			100	0.017
2	End of Bore at 12.06 m	-	26.0		S	12.0 12.06	30/60mm HB
3			25.0				
)istur Bulk S	turbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) bed Sample HB SPT Hammer Bouncing iample () No Sample Recovery t Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)	E Up C			nple		
g: Ja	cro 350					Logged by	V: NA

Client: Economic Development Queensland Project: Proposed Retirement Village and Child Care Developments Location: Former Oxley Secondary College, Blackheath Road, Oxley Project No: 018-118B BORE 19

Page No: 1 of 1 Date: 25 September 2018 Ground Surface Level: RL28.6m*

funt undar	Description		RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results
0		2	8.6	*****			
Ĩ	SANDY CLAY (CL) - brown, fine to coarse grained (topsoil)		4			- 0.5	4,4,4
1-1-1	SILTY CLAY (CH)		111	HH.	S	0.95	N=8
111	- stiff, pale brown with orange mottle - very stiff, orange	2	7.0-	HH	U	- 1.5	pp>600
2-						- 1.95	
3-	- pale grey with orange mottle	2	6.0-	HH		3.0	10 10 14
				##	S	3.45	10,10,14 N=24
4		2	5.0-	TIT		101714	
	CLAYEY SAND (SC) - dense, orange, fine grained	2	4.0-			4.5	16,16,20
5	SILTY CLAY (CL)		-	1.1.	S	4.95	N=36
-	- hard, red, with trace of fine grained sand	2	- 3.0	HH			
6-			1.1.1	HH	U	- 6.0	pp>600
-	SILTY CLAY (CI) - hard, grey	2	2.0-	HH-	0	6.45	FE
7-			1.1.1	HH			
	- with slickensides	2	1.0	HH	S	7.5	15,25,30/120mm
8-			111	HH		7.92	
9-	MUDSTONE (XW) - extremely low strength, grey	2	0.0		S	9.0	28,12/70mm
1	End of Bore at 9.22 m	1	9.0-			9.22	201121101111
0-							
-		1	8.0-				
1-			1 1 1				
-		1	7.0-				
2-			1				
-		1	6.0				
3-							
Distur Bulk S	turbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) bed Sample HB SPT Hammer Bouncing Sample () No Sample Recovery t Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)	Up Pus		mental Sam e Sample oring	ple		
ia: la	cro 350					Logged b	W: NA
	Method: Auger						J. 144
	water: No free groundwater encountered during drilling						

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments **Location:** Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118B

В	0	R	Е	2	0	

Page No: 1 of 2 Date: 26 September 2018 Ground Surface Level: RL21.8m*

	Description		RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results
0		2	1.8				
E	SILTY SAND (SM) - brown (topsoil)					0.5	4,4,5
1-	SILTY CLAY (CH) - stiff, pale grey with red mottle, trace of fine grained sand	2	1.0-	HH	S	0.95	N=9
-	- very stiff, pale brown with orange mottle	2	0.0-		U	1.5	pp=350
2-				HH.	0	1.95	
3-	- stiff, pale brown	1	9.0-	HH		3.0	150
-				HH	S		4,5,6 N=11
,=		1	8.0-			3.45	
+	- hard, with some fine grained sand		-	HH			
		1	7.0-	THE	U	4.5	pp>600
5-			-	世世		4.95	
-		16	5.0-				
6-			-		S	6.0	10,17,24
-		1	5.0-	HH		6.45	N=41
7-				HH			
-			1.0-	TETE	U	7.5	pp>600
8		1.	-0.	HH	0	7.95	pp ooo
-	SILTY CLAY (CL)		-				
9-	- hard, pale brown	15	3.0-	HH	S	9.0	12,23,27
-			-	HH	3	9.45	N=50
0]	SILTY CLAY (CI)	12	2.0-	TETE			
-	- very stiff, dark grey		-	H H	-	10.5	5,9,13
1-		11	-0.	HH	S	10.95	N=22
-			-	HH			
2-		10).0-	HH	540	12.0	8,16,23
-	SILTY CLAY (CH)		-	HH-	S	12.45	N=39
3-	- hard, grey with brown mottle, with slickensides	ę	0.0-	HH			
Distur Bulk S	turbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) bed Sample HB SPT Hammer Bouncing Gample () No Sample Recovery t Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)	Up Pus	htub	mental Sam e Sample oring	ple	ls(50) Point Lo (d) Diametr (a) Axial Te (i) Lump T	est
g: Hv	drapower Scout					Logged by	: NA
	Method: Auger to 1.5m, casing to 1.5m, then washbore					33 43	
	water: No free groundwater encountered during auger drilling						

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments **Location:** Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118B

BORE 20
Page No: 2 of 2
Date: 26 September 2018
Ground Surface Level: RL21.8m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results
14	 SILTY CLAY (CH) - hard, grey with brown mottle, with slickensides 	8.0-		S	- 13.5 - 13.95	12,18,27 N=45
15	SANDSTONE (XW) - extremely low strength, orange-brown, fine grained	7.0-	HH.	S	- 15.0 - 15.08	30/80mm
16		6.0-		S	- 16.5	17,29,30/120mm
17-	- End of Bore at 16.92 m	5.0-		0	- 16.92	11,20,001201111
18		4.0-				
19-		3.0-				
20-	- - - - -	2.0-				
21	- - - - - -	1.0-				
22-	- - - - -	0.0-				
23-		-1.0-				
24-		-2.0-				
25		-3.0-				
D Dis B Bu	disturbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) sturbed Sample HB SPT Hammer Bouncing lk Sample () No Sample Recovery cket Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)		omental Sam be Sample foring	nple		
Drill Gro	Hydrapower Scout ing Method: Auger to 1.5m, casing to 1.5m, then washbore undwater: No free groundwater encountered during auger drilling marks: *Approximate ground surface level estimated from a contour plan supplied by E	conomic Deve	lopment Qu	ueenslan	Logged b	y: NA

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments **Location:** Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118B BORE 21

Page No: 1 of 1 Date: 26 September 2018 Ground Surface Level: RL14.5m*

1-1-1-	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
		14.5					
+	SANDY CLAY (CL) - brown, fine to coarse grained (topsoil)	-			0.5	Bentonite-	
-	SILTY CLAY (CH)	-		U	100.000	pp>600	
Ę	- very stiff, brown with orange mottle, with some fine to coarse	·			0.95		
7	grained sand	13.0-	开开	S	1.5	3,3,5	
-	- stiff, dark grey, with some fine to coarse grained sand	-	HH	0	1.95	N=8 Spoil-	
-	- hard, pale brown	12.0-	11				88
-	- naid, pale blown	-			3.0	0.000	88
-		11.0		U	3.45	pp>600	88
-		-	HH		0.10		
-		-	HH			Bentonite-	
7	- hard, grey, with bands of orange sandy clay	10.0	HH	S	4.5	8,21,26	
	- naid, giey, with bands of orange sandy clay	1			4.95	N=47 Casing-	
+	ungu aliff	9.0-	HH				
-	- very stiff	-	HH.		6.0		
1		8.0		U	6.45	pp=500	
-		0.0	HH		0.45		
-		-					
7.	- hard	7.0	1111	S	7.5	13,25,30/130mm	
	- 11ard	-	HH	0	7.93	10,20,00/1001111	
+		6.0	222				
-	MUDSTONE (XW) - extremely low strength, dark grey, with bands of sandstone (XW)	-			9.0		
	extremely low strength, orange, fine to coarse grained	5.0-	S	9.07	30/70mm		
		5.0-			0.07		
		-			10	Sand -	
	SANDSTONE (XW)	4.0		(S)	10.5	30/100mm	
	- extremely low strength, grey and orange, fine grained	1		(0)	10.6	Screen -	
		3.0-					
		1	-	S	12.0	29,30/70mm	
+	End of Pore of 40.00 m	20-	898989868	5	12.22	20,007 01111	
	End of Bore at 12.22 m	2.0-					
1		-				and the second second	_
	Disturbed Sample S Standard Penetror	neter Te	st (SPT)		С	NMLC Coring	
	Bulk Sample HB SPT Hammer Bou				12 10 11)) Point Load Test Resu	
	Undisturbed Tube (50mm diameter) () No Sample Recove			(Da)	(d)	Diametral Point Load	
	Pocket Penetrometer Test (kPa) V Vane Shear Streng	jin, unce	orrected (кра)	(a)	Axial Point Load Stre	ngtn lest
	: Hydrapower Scout					ged by: NA	

Groundwater: No free groundwater encountered during auger drilling

Client: Economic Development Queensland Project: Broadscale Slope Stability Assessment Location: Former Oxley Secondary College, Blackheath Road, Oxley Project No: 018-118B

BORE 2	2
--------	---

Page No: 1 of 1 Date: 25 September 2018 Ground Surface Level: RL9.5m*

	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results
0		9.5			0.0	
-	FILL - brown, sandy silt, fine to medium grained		-	E	- 0.4	B22-1 QC07 QC08
	- brown, silty clay	9.0	-		0.4	
				E	0.9	B22-2
1	- grey-brown		-	_	- 1.2	
-			-	Е		B22-3
_		8.0			1.5	
2-			-	E	- 1.7 - 2.0	B22-4
_	SILTY CLAY (CH)		HH.		2.2	
-	- dark grey, trace of fine grained sand	7.0	HH	E	2.5	B22-5
-			HH	E	- 2.7	B22-6
3—			HH		- 3.0	
-				E	3.2	B22-7
	- brown, with fine to medium grained sand	6.0			- 3.5	
-			HH	E	3.7	B22-8
4	End of Bore at 4 m		-		- 4.0	
-		5.0	-			
			-			
5-						
Disturl Bulk S	turbed Tube Sample (50mm dia) S Standard Penetration Test (SPT) bed Sample HB SPT Hammer Bouncing tample () No Sample Recovery t Penetrometer Test (kPa) V Vane Shear Strength, Uncorrected (kPa)		onmental Sar ibe Sample Coring	nple		
i g: Ja	cro 350				Logged by	y: NA
rilling	Method: Auger					

Client: Economic Development Queensland Project: Broadscale Slope Stability Assessment Location: Former Oxley Secondary College, Blackheath Road, Oxley Project No: 018-118B

BORE 23	
---------	--

Page No: 1 of 1 Date: 27 September 2018 Ground Surface Level: RL9.2m*

Depth (m)		Description		RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results
0-				9.2			0.0	
-	FILL - brown, sandy silt, fine to mee	ium grained		-		E	0.4	B23-1
-	- brown, silty clay (CI), trace of	fine to coarse grained sand		-			0.4	
1_				-	-	E	0.7	B23-2
1				8.0-			- 1.0 - 1.2	
-				-		E	1.2	B23-3
+	- brown and dark grey mottled					_	1.7	
2-						Е		B23-4
2	SILTY CLAY (CH)			7.0-			2.0 2.2	
_	- brown and pale grey mottled			7.0-	HH	E	2.2	B23-5
-					HH		2.5	
-				-	HH	E	2.7	B23-6
3-				-	HH	-	3.0	
-				6.0-			3.3	
1				1	HH	E	- 3.5	B23-7
1					HH	_	3.7	500.0
4					HH:	E	4.0	B23-8
_		End of Bore at 4 m		5.0-			4.0	
-				-				
-				-				
-				-				
5-				-				
Distur Bulk S	turbed Tube Sample (50mm dia) rbed Sample Sample tt Penetrometer Test (kPa)	 S Standard Penetration Test (SPT) HB SPT Hammer Bouncing () No Sample Recovery V Vane Shear Strength, Uncorrected (kPa 	E Up C	Environ Pushtube NMLC Co		nple		
ia: Li	udranautor Secut							
	ydrapower Scout Method: Auger						Logged by	: NA

Client: Economic Development Queensland Project: Broadscale Slope Stability Assessment Location: Former Oxley Secondary College, Blackheath Road, Oxley Project No: 018-118B

Page No: 1 of 1
Date: 27 September 2018
Ground Surface Level: RL9.0m*

BORE 24

Sample Depth (m) Sample Type **Fest Results** Description Lithology Depth (m) E R 9.0 0. 0.0 FILL B24-1 - brown, sandy silt, fine to medium grained Е 0.4 - brown, silty clay, trace of fine to coarse grained sand 0.7 B24-2 Е 1 8.0 1.0 1.2 B24-3 Ε 1.5 - brown with orange mottle 1.7 B24-4 Е 2-7.0 2.0 SILTY CLAY (CH) 2.2 - dark grey, with some fine to coarse grained sand B24-5 Е 2.5 - with some fine subangular gravel 2.7 B24-6 E 6.0 3.0 3-- grey-brown and orange mottled 3.2 Е B24-7 3.5 3.7 B24-8 Е 5.0 4.0 4 End of Bore at 4 m 4.0 5 Standard Penetration Test (SPT) Е **Environmental Sample** Is(50) Point Load Test Result (MPa) Undisturbed Tube Sample (50mm dia) U S HB SPT Hammer Bouncing Up Pushtube Sample (d) **Diametral Test** D **Disturbed Sample NMLC** Coring **Axial Test** В **Bulk Sample** No Sample Recovery С (a) () Vane Shear Strength, Uncorrected (kPa) Lump Test Pocket Penetrometer Test (kPa) ٧ (i) pp Logged by: NA Rig: Hydrapower Scout Drilling Method: Auger

Groundwater: Free groundwater encountered at 2.1m during drilling

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments Location: Former Oxley Secondary College, Blackheath Road, Oxley Project No: 018-118B

BORE 25

Page No: 1 of 2 Date: 23 January 2019 Ground Surface Level: RL19.0m*

2 2 4	Description	RI- (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	G oundwater Monitoring Bore
t		19.0			-		
	SILTY SAND (SM) - loose to medium dense, brown-grey, fine to medium grained, with tree roots SILTY CLAY (CI)	18.0	IIII HH HH	S	- 0.5 - 0.95	7,7,6 N=15	
	- stiff to very stiff, brown-grey mottled orange-brown, trace of tree roots - hard	17.0	HH HH	U	- 1.5 - 1.95	Bentonite- pp>600	
	- very stiff, grey - grey mottled orange-brown	16.0	HHHH	S	- 3.0 - 3.45	6,8,12 N=20	
		15.0	HH H		4.5	100	
		14.0		U	4.95	pp=400 Casing-	
	- dark grey-black mottled orange-brown and grey	13.0		S	- 6.0 - 6.45	8,9,14 N=23	
	- hard, possible slickenslided	12.0		S	7.5 7.95	Sand - 11,18,30 N=48	
	MUDSTONE (XW)	10.0	HH HH	S	9.0 9.27	21,30/115mm	
	- extremely low strength, brown-grey mottled orange-brown	9.0				Screer -	
	- brown-grey	8.0		S	10.5 10.91	17,27,30/110mm	
	-	7.0-		S	12.0 12.28	22,30/125mm	
		6.0	• • • • • • • • • • • • • • • • • • •				
E	Disturbed SampleSStandard PenetrorBulk SampleHBSPT Hammer BoundUndisturbed Tube (50mm diameter)()No Sample RecoverPocket Penetrometer Test (kPa)VVane Shear Strengt	ncing ery		kPa)	C Is(5) (d) (a)	NMLC Coring)) Point Load Test Resu Diametral Point Load Axial Point Load Stre	Strength Test
g:	Hydrapower Scout			2	Log	ged by: FL	

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments Location: Former Oxley Secondary College, Blackheath Road, Oxley Project No: 018-118B

BO	RE	25
----	----	----

Page No: 2 of 2 Date: 23 January 2019 Ground Surface Level: RL19.0m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
14-	MUDSTONE (XW) - extremely low to very low strength, brown-grey	5.0-		(S)	13.5 13.58	30/80mm	
15-	End of Bore at 15.08 m	4.0		(S)	15.0 15.08	30/80mm	
16-	End of Bore at 15.06 m	3.0					
- 17-		2.0					
18-		1.0					
19		0.0					
20		-1.0					
21-		-2.0					
22-		-3.0					
23-		-4.0					
24		-5.0					
26-		-7.0					
D B U pp	Bulk SampleHBSPTUndisturbed Tube (50mm diameter)()No S	dard Penetrometer Te Hammer Bouncing ample Recovery Shear Strength, Unc			C Is(50 (d) (a)	NMLC Coring)) Point Load Test Re Diametral Point Loa Axial Point Load St	d Strength Test
Dri	g: Hydrapower Scout illing Method: Auger to 3m, then washbore oundwater: No free groundwater encountered during auger drilling				Log	ged by: FL	

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments Location: Former Oxley Secondary College, Blackheath Road, Oxley Project No: 018-118B BORE 26

Page No: 1 of 2 Date: 24 January 2019 Ground Surface Level: RL20.5m*

neptn (m)	Description	KL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
-		20.5					N N
1111	SILTY SAND (SM) - loose to medium dense, grey-brown, fine to medium grained, with tree roots		HH.	S	0.5 0.95	4,3,5 N=8	
11,11	SILTY CLAY (CH) - firm to stiff, grey-brown mottled orange-brown, with tree roots - stiff	19.0		U	1.5 1.95	Bentonite - pp=200	
11,111	- grey	18.0		S	3.0	3,6,8	
11111		17.0	####		3.45	N=14	
	- hard, grey mottled orange-brown	16.0	HHH	U	4.5 4.95	pp>600 Casing -	
	- very stiff, grey mottled dark brown and orange, slickensided	15.0		S	6.0 6.45	6,8,11 N=19	
	- dark grey	13.0		U	7.5 7.95	Sand-	
	MUDSTONE (XW) - extremely low strength, brown-grey mottled orange-brown	12.0		S	9.0 9.41	19,30,30/105mm	
		10.0		S	10.5 10.77	Screer 29,30/120mm	11-11
	SILTY CLAY (CH) - hard, brown-grey mottled black	9.0	HH HH	S	12.0 12.45	12,22,29 N=52	
	Disturbed Sample S Standard Penetro Bulk Sample HB SPT Hammer Bou Undisturbed Tube (50mm diameter) () No Sample Recov Pocket Penetrometer Test (kPa) V Vane Shear Streng	ncing ery		kPa)	C Is(50 (d) (a)	NMLC Coring D) Point Load Test Resu Diametral Point Load Axial Point Load Stree	lt (MPa) Strength Tes

Groundwater: No free groundwater encountered during auger drilling

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments **Location:** Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118B BORE 26

Page No: 2 of 2 Date: 24 January 2019 Ground Surface Level: RL20.5m*

	Disturbed Sample S Bulk Sample HB	Standard Penetrometer	Test	(SPT)		C Is(5)	NMLC Coring)) Point Load Test Re	sult (MPa)
1 1 1 1		-5.0-						
		-4.0-						
1111		-3.0-						
1 1 1		-2.0-						
1 1 1		-1.0						
		-1.0-						
-		0.0-						
-		1.0-						
		2.0-						
		3.0-						
-		4.0-						
	End of Bore at 15.42 m							
		5.0-			S	15.0 15.42	14,22,30/120mm	<u>:1=1</u>
1111	- extremely low strength, brown-grey	6.0-						
1111	MUDSTONE (XW)	7.0-	T/		S	13.5 13.79	17,30/140mm	
	Description	RL (m)		Lithology	Sample Type	Sample Depth (m)	Test Results	Croundwater Monitoring Bore

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments **Location:** Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118B BORE 27

Page No: 1 of 2 Date: 25 January 2019 Ground Surface Level: RL26.5m*

	Description	Rl. (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
1		26.5					
	FILL - brown, silty sand, with organics and brick fragments SILTY CLAY (CH) - stiff, dark brown-grey mottled black and orange-brown, with fine to	25.0	H H H	S	- 0.5 - 0.95	4,5,5 N=10 Bentonite –	
	medium grained sand, with tree roots SANDY CLAY (CH) - stiff, brown-grey mottled orange and black, fine to medium grained sand	24.0	_	S	- 1.5 - 1.95	3,4,6 N=10	
-	- firm to stiff, grey mottled orange-brown	23.0		U	- 3.0 - 3.45	pp=150	
	SILTY CLAY (CH) - very stiff, grey mottled orange, tree roots	22.0		S	- 4.5 - 4.95	3,7,10 N=17 Casing	
	- hard, grey	21.0		U	6.0 6.45	pp>600	
-	SANDSTONE (XW) - extremely low strength, pale brown-orange	19.0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	#2#2 - -	S	7.5 7.62	Sand — 30/120mm	
	- pale grey	17.0		S	9.0 9.1	30/100mm	
	- very low strength, pale brown-orange	16.0 		S	10.5 10.58	Screer — 30/75mm	
	SILTY CLAY (CH) - hard, grey, with slickensides - dark grey-black	15.0	HH HH	S	12.0 12.45	16,22,29 N=51	
B U	Disturbed Sample S Standard Penetron ulk Sample HB SPT Hammer Bour ndisturbed Tube (50mm diameter) () No Sample Recover Pocket Penetrometer Test (kPa) V Vane Shear Streng	ncing ery		kPa)	C Is(50 (d) (a)	NMLC Coring D) Point Load Test Resul Diametral Point Load Strer Axial Point Load Strer	t (MPa) Strength Tes

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments **Location:** Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118B BORE 27

Page No: 2 of 2 Date: 25 January 2019 Ground Surface Level: RL26.5m*

	Description	(m) RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
	MUDSTONE (XW) - extremely low strength, grey mottled pale grey	13.0		S	13.5 13.79	18,30/135mm	
		12.0			15.0	47.05.20(420	
-	End of Bore at 15.42 m	11.0		S	15.42	17,25,30/120mm	
		10.0					
		9.0					
-		8.0-					
		7.0					
		6.0					
		5.0					
		4.0-					
-		-					
-		3.0-					
-		2.0					
-		1.0-					
Bi	isturbed Sample S ulk Sample HB ndisturbed Tube (50mm diameter) () ocket Penetrometer Test (kPa) V	Standard Penetrometer Te SPT Hammer Bouncing No Sample Recovery Vane Shear Strength, Unco			C Is(5 (d) (a)	NMLC Coring 0) Point Load Test Res Diametral Point Loa Axial Point Load Stu	d Strength Te
Pia:	Hydrapower Scout				Log	ged by: FL	

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments Location: Former Oxley Secondary College, Blackheath Road, Oxley Project No: 018-118B

BORE 28

Page No: 1 of 2 Date: 25 January 2019 Ground Surface Level: RL25.0m*

	Description		RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
	fine to medium grained, with tree grey mottled orange-brown and bl		25.0		S	0.5	6,8,9 N=17	
medium	grained sand, with tree roots <i>LAY (CH)</i> own-grey mottled black		23.0	HHHH	S	- 1.5 - 1.95	4,5,5 N=10	
- hard, d	ark grey	22.0		U	3.0 3.45	pp>600		
grey (re	- grey (residual mudstone)				S	4.5 4.95	12,25,30/130mm Casing -	
- - grey m	ottled pale grey and black		19.0	HHHH	S	6.0 6.45	13,22,29 N=51	
	DNE (XW) ely low strength, orange-brown wit	h iron staining	18.0 17.0 17.0	HH HH	S	7.5 7.77	Sand - 17,30/115mm	
	ottled orange-brown ottled pale grey				S	9.0 9.44	16,25,30/135mm	
	SILTY CLAY (CH) - hard, grey mottled pale grey and pale brown (residual mudstone)				S	10.5 10.95	Screen - 14,21,30 N=51	11-11
	DNE (XW) ely low strength, grey				S	12.0 12.41	16,27,30/110mm	
		S Standard Pene HB SPT Hammer E () No Sample Red V Vane Shear Str	ouncing covery		kPa)	C Is(50 (d) (a)	NMLC Coring 0) Point Load Test Resu Diametral Point Load Axial Point Load Stre	llt (MPa) Strength T

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments **Location:** Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118B BORE 28

Page No: 2 of 2 Date: 25 January 2019 Ground Surface Level: RL25.0m*

Depth (m)	Description	RL (m)		Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
4	MUDSTONE (XW) - extremely low strength, grey	11.(S	13.5 13.79	20,30/140mm	
5		10.0			S	15.0 15.25	22,30/100mm	
	End of Bore at 15.25 m	9.0				10.20		
		8.0						
3		7.0						
		6.0						
		5.0						
		4.0)					
		3.0						
		2.0						
1111		1.0						
		0.0						
6-		-1.(
	Disturbed SampleSBulk SampleHBUndisturbed Tube (50mm diameter)()Pocket Penetrometer Test (kPa)V	Standard Penetrometer SPT Hammer Bouncing No Sample Recovery Vane Shear Strength, L	1			C Is(5((d) (a)	NMLC Coring) Point Load Test Re Diametral Point Lo Axial Point Load S	ad Strength Tes
	: Hydrapower Scout Iling Method: Auger to 3m, then washbore					Log	ged by: FL	

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments **Location:** Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118B

BORE 29

Page No: 1 of 2 Date: 7 March 2019 Ground Surface Level: RL13.5m*

fund under	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
0		13.5			-		
	BITUMINOUS CONCRETE - 200mm thick FILL - pale grey, silty gravelly sand, pale brown (roadbase)		HH.	S	- 0.5 - 0.95	3,4,6 N=10	
7	- brown, grey, sandy clay with gravel	12.0		U	1.5	Bentonite-	
2-1\	SILTY CLAY (CH) - stiff, brown mottled orange-brown	11.0		U	1.95	pp>600	
3 1 1 1 1	- hard	10.0	HHHHH	U	3.0 3.45	pp>600	
-		9.0	HH		4.5	8011	
5-1-1-	- very stiff, trace of iron staining	8.0		S	4.95	8,9,11 N=20 Casing -	
3			T	2421	6.0	5,7,8	
1111	- stiff to very stiff, grey-brown, with slickensides	7.0		S	6.45	0,7,0 N=15 Sand -	
- TITI	- very stiff, mottled black, with sandy clay bands	6.0	HHH HHH	S	7.5 7.95	5,8,12 N=20	
11111		5.0		U	9.0 9.45	pp=550	
)-			HH			Screen -	
1111		3.0	HH HH	S	10.5 10.95	8,12,15 N=27	
-		2.0			· !		
	SILTSTONE (XW) - extremely low strength, brown-grey, with thin coal seams	1.0-	-	S	12.0 12.43	11,17,30/125mm	
) 3 1	Disturbed Sample S Standard Penetro Bulk Sample HB SPT Hammer Bou Indisturbed Tube (50mm diameter) () No Sample Recov Pocket Penetrometer Test (kPa) V Vane Shear Strem	incing very		kPa)	C Is(50 (d) (a)	NMLC Coring 0) Point Load Test Resu Diametral Point Load Axial Point Load Stre	It (MPa) Strength Te
Diar	Hydrapower Scout						
rig:	ing Method: Auger to 3m, then washbore				Log	ged by: FL	

Client: Economic Development Queensland

Project: Proposed Retirement Village and Child Care Developments Location: Former Oxley Secondary College, Blackheath Road, Oxley **Project No:** 018-118B

В	0	R	E	29	

Page No: 2 of 2 Date: 7 March 2019 Ground Surface Level: RL13.5m*

Depth (m)	Description	RL (m)	Lithology	Sample Type	Sample Depth (m)	Test Results	Groundwater Monitoring Bore
1	SILTSTONE (XW) - extremely low strength, brown-grey, with thin coal seams	0.0			13.5	27,30/95mm	
14-	- with interbedded sandstone bands			S	13.75	27,30/95mm	
		-1.0			15.0		
15-	End of Bore at 15.24 m	-2.0		S	15.24	23,30/85mm	
6-	End of Bole at 15.24 m	-2.0					
1.1.1		-3.0					
7-							
8-		-4.0-					
111		-5.0-					
9-		-					
0		-6.0-					
		-7.0-					
1-							
1 1 1		-8.0-					
2-		-9.0-					
3-		-					
1.1.1		-10.0					
4-		-11.0-					
25-		-					
111		-12.0					
D B U pp	Disturbed SampleSStandard PeneBulk SampleHBSPT Hammer EUndisturbed Tube (50mm diameter)()No Sample RePocket Penetrometer Test (kPa)VVane Shear St	Bouncing covery			C Is(5((d) (a)	NMLC Coring)) Point Load Test Re Diametral Point Lo Axial Point Load S	ad Strength Test
-	g: Hydrapower Scout					ged by: FL	and the state for the test shade

Groundwater Assessment Oxley PDA - Stage 1A Blackheath Road, Oxley

APPENDIX C

HYDRAULIC TESTING PROCESSING SHEETS

Project No.: 018-118D - 15 September 2020

Bouwer and Rice analysis of slug test, WRR 1976

WELL ID: 25

REMARKS:

Bouwer and Rice analysis of slug test, WRR 1976

WELL ID: Bore 25

REMARKS:

Bouwer and Rice analysis of slug test, WRR 1976

Bouwer and Rice analysis of slug test, WRR 1976

Bouwer and Rice analysis of slug test, WRR 1976

Bouwer and Rice analysis of slug test, WRR 1976

Bouwer and Rice analysis of slug test, WRR 1976

WELL ID: Bore 29

REMARKS:

Bouwer and Rice analysis of slug test, WRR 1976

Bouwer and Rice analysis of slug test, WRR 1976

Bouwer and Rice analysis of slug test, WRR 1976

Bouwer and Rice analysis of slug test, WRR 1976

Bouwer and Rice analysis of slug test, WRR 1976

TIME, Minute:Second

REMARKS:

Bouwer and Rice analysis of slug test, WRR 1976

Bouwer and Rice analysis of slug test, WRR 1976

APPENDIX D

RESULTS OF PARTICLE SIZE DISTRIBUTION ANALYSIS

Project No.: 018-118D – 15 September 2020

Material Test Report

Report Number:	018-118D-2A
Issue Number:	1
Date Issued:	07/07/2020
Client:	Economic Development Queensland
	Level 14, 1 William Street, Brisbane QLD 4000
Project Number:	018-118D
Project Name:	Oxley PDA - Stage 1A
Project Location:	Seventeen Mile Rocks Road, Oxley
Work Request:	1175
Sample Number:	G20-1175A
Date Sampled:	29/06/2020
Dates Tested:	02/07/2020 - 06/07/2020
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Sample Location:	Bore 100, Depth: 7.5 - 7.9m

Particle Size Distribution (AS1289 3.6.1) Passing Limits Sieve Retained % Passed % Retained Limits 0.3 mm 100 0 0.15 mm 100 0 0.075 mm 99 1 Moisture Content (AS 1289 2.1.1) 30.0 Moisture Content (%)

Ground Testing Services Pty Ltd Gold Coast Laboratory 2/23 Traders Way Currumbin QLD 4223 Phone: (07) 5535 2539 Email: enquiries@groundtestingservices.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory: Rede Irwin Laboratory Manager

NATA Accredited Laboratory Number: 18820

Particle Size Distribution

WORLD RECOGNISED

-	~	
N	ATA	
TEC	HNICAL	

Albion Laboratory 11 Moore Street ALBION QLD 4010 Telephone 61 (07) 3256 2900 Accreditation No. 19529

Accredited for compliance with ISO/IEC 17025 - Testing

		PARTICLE SIZE DIS				-	1		
		Test Procedure: AS1289.3.6.1	1	Test Procedure:		-			
		Test Procedure: AS1289.2.1.1		Test Procedure:	Q103B	1	1		
Client:	Economic Develo	opment Queensland	Sample Date:	29/06/2020	Tested by and Date:	CT 4/07/	2020		
Project:	Slope Stability As	sessment	Checked	by: CT 4/07/2020	Date:	6/07/	2020		
Location:	Oxley PDA - Stag Blackheath Road		Report N	o.: 018-118D_F	SD_T2007-	03			
Project No:	018-118D		THIS	DOCUMENT SHALL N	OT BE REPRO	DUCED	EXCEPT IN FULL		
	Sample No.:			T2007-03	3		1		
	Sampling Metho			AS1289.1.2.1 0					
	Sample Moisture			23.4					
	Bore:			100					
	Depth (m):			10.5-10.6	3		_		
				DEDOENTER					
	AS	SIEVE SIZE (mm) 4.75		PERCENT PAS 100	SSING				
		2.36		97			1		
		1.18		95					
		0.600		94					
		0.425		89					
		0.300		80			-		
		0.150 0.075		73 56					
			an se				1		
	100		-						
	90	1					-		
	80								
	8 70	1							
	Percent Passing (%)								
	ssir	1				1011			
	88 50 H								
	tua 40		1341						
	30								
	20 -								
						No.			
	10 -					1111			
	0 +					4			
	0.01	0.10 Sieve	1.00 Size (mm)	10.00	10	0.00			
		Sieve							
			1	1.01			-		
Comments:			- 62	d Signatory					
Comments:			Authorise Craig Tu		6	i July 2 Date			

		~					ND NG ICES				
						aborate ore Stree QLD 4 (07) 32 on No.	eet 1010 256 2900				
Accredited for	complia	ance with IS	SO/IEC 17025 -	Testing				OPT			
			Test Procedu	Ire: AS1289.3.6.1 Ire: AS1289.2.1.1		7	est Procedure: est Procedure:	Q103A			
Client:	nt: Economic Development Queensland		Sample Date:	9	29/06/2020	Tested by and Date:	CT 4/07/2020				
Project:	Slope Stability Assessment Oxley PDA - Stage 1A Blackheath Road, Oxley				Check	ed by:	CT 4/07/2020	Date:	6/07/2020		
Location:					Repor	No.:	018-118D_F	SD_T2007-	04		
Project No:	018-1	18D			т	HIS DOC	UMENT SHALL N	OT BE REPRO	DUCED EXCEPT IN FULL		
	Samp	le No.: ling Meth le Moistu	nod: ire Content (%):		A	T2007-04 S1289.1.2.1 (19.1	Second and the second se			
	Bore: Depth (m):						100 13.5-13.9	4			
		A	S SIEVE SIZE	E (mm)		P	PERCENT PA	SSING			
			2.36			100					
			0.600								
			0.425								
			0.150 0.075			99 81					
	[0.070								
		100 90		M	ŮШ°						
		80									
	(%	70									
	Percent Passing (%)	60									
	assi	50									
	entP	40									
	Perce	30									
		20									
		10									
		0							単一		
		0.01		0.10	1.00 Size (mm)		10.00	10	00.00		
				Sieve							
	L.				The second se	and the second second second	Signatory				

	~			SE Albion La		ND NG ICES	1	TOCS	
	TECHNICAL			ALBION C ALBION C elephone 61 (Accreditatio	e Stre QLD 4 (07) 32	et 1010 256 2900		Quality Certified	
Accredited for	compliance with			זדווסומד			OPT		
PARTICLE SIZE DIST Test Procedure: AS1289.3.6.1 Test Procedure: AS1289.2.1.1					✓ Test Procedure: Q103A ✓ Test Procedure: Q103B				
Client:	Economic Development Queensland			Sample Date:	Sample Date:		Tested by and Date:	CT 4/07/2020	
Project:	Slope Stability Assessment			Checke	d by:	CT 4/07/2020	Date:	6/07/2020	
Location:	Oxley PDA - Stage 1A Blackheath Road, Oxley			Report	No.:	018-118D_F	SD_T2007-	05	
Project No:	018-118D	ТН	THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL						
	Sample No.: Sampling Method: Sample Moisture Content (%): Bore: Depth (m):				T2007-05 AS1289.1.2.1 Cl.6.5.3 23.1 100 18.0-18.44				
	-		PERCENT PASSING 100 100 100 100 100						
			100						
			100 99						
	100	0.075					inite the		
	90								
	Percent Passing (%)								
	20 - 10 -								
	0		0.10	1.00		10.00	10	0.00	
	0.01			Size (mm)		20100	10		
Comments:			11	Authori		ignatory	é	3 July 2020	
						sed Si	gnatory		
----------------	--	--	-------------	----------------------------------	---	-----------------	----------------------------------	---------------------	--------------------
		0.01		0.10 Sie	1.00 eve Size (mm)		10.00	10	00.00
	(目
	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
	년 30 20								
	0, 20 20 20 20 20 20 20 20 20 20 20 20 20 2		1						
	Sas 20								
	6) Buig 60								
	90	and the second sec							
	100					-		1.1.111	
			0.075				89		
			0.150				92		
			0.425				94 93		
			0.600				95		
			2.36				99 97		
		AS SIL	6.7 4.75	(mm)			100 100	Somo	
		AS SIE	EVE SIZE	(mm)		DI	ERCENT PAS	SSING	
	Depth (n	n):					1.5-1.95		
		Moisture C	ontent (%	%):			22.4 101		
	Sample Samplin	No.: g Method:				AS	T2007-06 S1289.1.2.1 C		
Project No:	: 018-118D			ТНІ	THIS DOCUMENT SHALL NOT BE REPRODUCE				
Location:	Oxley PDA - Stage 1A Blackheath Road, Oxley			Report	Report No.: 018-118D_PSD_T2007			06	
Project:	Slope Stability Assessment			Checked	d by:	CT 4/07/2020	Date:	6/07/2020	
Client:	Economi	c Developm	nent Quee	ensland	Sample Date:		30/06/2020	Tested by and Date:	CT 4/07/2020
		Tes	st Procedui	re: AS1289.3.0 re: AS1289.2.1	6.1	Te	est Procedure: est Procedure:	Q103A	
Accreated to	compliance				DISTRIBUTI	ON T	EST REP	ORT	
Accredited for	TECHN	FENCE	0 17005	Tralian	ALBION C Telephone 61 (Accreditation	07) 32	56 2900	l	Quality Cart/Red C
	NA	TA			Albion La 11 Moor	e Stree	et		TOCSI
					5 SEI		ND NG CES		

Comments:			Authorise	d Signatory Mf cker		6 July 2020 Date	
	0.01	0.10 Siev	1.00 ve Size (mm)	10.00	1	00.00	
	0		1.00	10.00	1		
	10						
	20						
	Percent Passing (%)						
	07 and 10						
	ssi 60						
	(%) 70						
	80 -						
	90						
	100 -		<u></u>				
		0.150 0.075		100 100 100 100 96			
		0.300					
		0.600 0.425					
		1.18		100 100			
		4.75 2.36		100 100			
		AS SIEVE SIZE (mm)		PERCENT P	ASSING		
	Depth (m):			9.0-9.4	3		
	Bore:			101			
	Sampling Met	thod: ture Content (%):		AS1289.1.2.1 20.1	Cl.6.5.3		
	Sample No.:			T2007-08			
Project No:	Blackheath Ro 018-118D	bad, Oxley			DUCED EXCEPT IN FULI		
Location:	Oxley PDA - Stage 1A		Report No	4/07/2020	_PSD_T2007		
Project:	Slope Stability Assessment		Checked b	v: CT	Date:	6/07/2020	
Client:	Economic Dev	velopment Queensland	Sample Date:	30/06/202	Tested by and Date:	CT 4/07/2020	
		Test Procedure: AS1289.2.1.		Test Procedure			
		PARTICLE SIZE D Test Procedure: AS1289.3.6.	Transmission of the local division of the lo	Test Procedure			
Accredited for	compliance with	ISO/IEC 17025 - Testing		TEOT DE	DODT		
	COMPETENCE		Accreditation N				
	TECHNICAL		ALBION QLI Felephone 61 (07			Quality Certified	
	NATA		Albion Labo 11 Moore S				
	~						
			C TES	UND FING VICES			
			GRU	UND			

Project: S Location: C Project No: C S S S E	Slope Stabilit Oxley PDA - S Blackheath R D18-118D Sample No.: Sample Mois Bore: Depth (m):	Test Procedure Test Procedure velopment Queen y Assessment Stage 1A oad, Oxley ethod: sture Content (%	e: AS1289 e: AS1289	9.3.6.1	✓ 7 Sample Date: Checked by: Report No.: THIS DOC	Fest Procedure: Fest Procedure: 30/06/2020 CT 4/07/2020 018-118D_F	Q103A Q103B Tested by and Date: Date: PSD_T2007- OT BE REPRO DI I.6.5.3	CT 4/07/2020 6/07/2020 09 DUCED EXCEPT IN FULL
Project: S Location: C Project No: C S S S E	Slope Stabilit Oxley PDA - S Blackheath R D18-118D Sample No.: Sample Mois Bore: Depth (m):	y Assessment Stage 1A oad, Oxley ethod: iture Content (%			Sample Date: Checked by: Report No.: THIS DOC	30/06/2020 CT 4/07/2020 018-118D_F UMENT SHALL N T2007-05 S1289.1.2.1 C 19.1 101	Tested by and Date: Date: PSD_T2007- OT BE REPRO	4/07/2020 6/07/2020 09
Location: C Project No: C S S E	Oxley PDA - : Blackheath R D18-118D Sample No.: Sample Mois Sample Mois Bore: Depth (m):	Stage 1A oad, Oxley ethod: iture Content (%	6):		Report No.: THIS DOC	4/07/2020 018-118D_F UMENT SHALL N T2007-05 S1289.1.2.1 C 19.1 101	PSD_T2007- OT BE REPRO D DI.6.5.3	09
Location: Project No: 0 S S E E	Blackheath R D18-118D Sample No.: Sampling Me Sample Mois Bore: Depth (m):	oad, Oxley ethod: iture Content (%	6):		THIS DOC	018-118D_F UMENT SHALL N T2007-05 S1289.1.2.1 C 19.1 101	ot be repro))1.6.5.3	
S	Sample No.: Sampling Me Sample Mois Bore: Depth (m):	ture Content (%	6):		1	T2007-09 S1289.1.2.1 C 19.1 101	9 DI.6.5.3	DUCED EXCEPT IN FULL
S	Sampling Me Sample Mois Bore: Depth (m):	ture Content (%	6):		A	S1289.1.2.1 C 19.1 101	01.6.5.3	
S	Sample Mois Bore: Depth (m):	ture Content (%	6):			19.1 101		
	Depth (m):					second and second for second in the second s	E	
		AS SIEVE SIZE	(mm)		F	PERCENT PAS	SSING	
		2.36				100 100		
		0.600				100		
		0.425				100 100	a second	
		0.300						
		0.075						
T	100 -							
	90							
	80							
	8 70							
	Percent Passing (%)							
	Sag 50							
	40							
	06 Ber							
	20							
	10							
	o 📮							
	0.01	0).10		1.00	10.00	10	0.00
				Sieve Size	(mm)			

	NAT	A		A 1	GROU TESTI SERVI Ibion Laborate 1 Moore Stre BION QLD 4	ory et		
	TECHNICA	AL		Telepho	one 61 (07) 32 editation No.	256 2900	l	Quality Certified
Accredited for	compliance w	ith ISO/IEC	17025 - Testing					
		Test	RTICLE SIZ Procedure: AS128 Procedure: AS128	9.3.6.1	√ T	TEST REF est Procedure: est Procedure:	Q103A	
Client:	Economic D	Developme	nt Queensland		Sample Date:	1/06/2020	Tested by and Date:	FC/CT 23/06/2020
Project:	Oxley PDA	Oxley PDA - Stage 1A		c	Checked by:	ст	Date:	23/06/2020
Location:	Seventeen Mile Rocks Road, Oxley			1	Report No.:	018-118D_	17	
Project No:	018-118D				THIS DOCUMENT SHALL NOT BE REPRODUCED EXC			
	Sample No Sampling M				Δ	T2006-1 S1289.1.2.1		
	Sample Mo		ntent (%):			20.0	01.0.5.5	
	Bore:					102 6.0-6.45	5	
	Deptir (iii).	Depth (m):				0.0 0.10		
	AS SIEVE SIZE (mm)							
		AS SIEV	/E SIZE (mm)		P	PERCENT PA	SSING	
		AS SIEV	2.36		en en le	100	SSING	
			2.36 1.18 0.600		F	100 100 100	SSING	
			2.36 1.18 0.600 0.425		P	100 100 100 100	SSING	
			2.36 1.18 0.600 0.425 0.300 0.150		F	100 100 100 100 100 99	SSING	
			2.36 1.18 0.600 0.425 0.300		F	100 100 100 100 100	SSING	
	100 -		2.36 1.18 0.600 0.425 0.300 0.150		F	100 100 100 100 100 99	SSING	
	90 -		2.36 1.18 0.600 0.425 0.300 0.150		P	100 100 100 100 100 99	SSING	
	90 - 80 -		2.36 1.18 0.600 0.425 0.300 0.150		P	100 100 100 100 100 99	SSING	
	90 - 80 -		2.36 1.18 0.600 0.425 0.300 0.150		P	100 100 100 100 100 99	SSING	
	90 - 80 -		2.36 1.18 0.600 0.425 0.300 0.150		P	100 100 100 100 100 99	SSING	
	90 - 80 -		2.36 1.18 0.600 0.425 0.300 0.150		F	100 100 100 100 100 99	SSING	
	- 09 - 08 - 00 - 00 - 00 - 00 - 00 - 00		2.36 1.18 0.600 0.425 0.300 0.150		P	100 100 100 100 100 99	SSING	
	- 00 - 03 - 05 - 05 - 06 - 06 - 08 - 00 - 02 - 02		2.36 1.18 0.600 0.425 0.300 0.150		P	100 100 100 100 100 99	SSING	
	90 - 80 - 90 - 90 - 90 - 90 - 90 - 90 - 90 - 9		2.36 1.18 0.600 0.425 0.300 0.150		P	100 100 100 100 100 99	SSING	
	- 00 - 03 - 05 - 05 - 06 - 06 - 08 - 00 - 02 - 02		2.36 1.18 0.600 0.425 0.300 0.150	1.	.00	100 100 100 100 100 99		00.00
	90 - 80 - 90 - 90 - 90 - 90 - 90 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		2.36 1.18 0.600 0.425 0.300 0.150 0.075	1. Sieve Size (.00			00.00
Comments:	90 - 80 - 90 - 90 - 90 - 90 - 90 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		2.36 1.18 0.600 0.425 0.300 0.150 0.075	Sieve Size (.00			00.00 23 June 2020

Client: Project:	Economic Dev Oxley PDA - 5	velopment Que	lure: AS1289.2.1.1 eensland	Date:		Test Procedure:	Tested by and Date: Date:	FC/CT 16/06/2020 17/06/2020
Location:	Seventeen Mile Rocks Road, Oxley		Report		018-118D_	PSD_T2006-	04	
Project No:	018-118D			ТНІ	S DOC	UMENT SHALL N	OT BE REPRO	DUCED EXCEPT IN FULL
	Sample No.:			T		T2006-0	and the second distance	
	Sampling Me				A	S1289.1.2.1		
	Sample Mois Bore:	ture Content	(%):			21.3 102		
	Depth (m):	1.1				15.0-15.4	15	
	AS SIEVE SIZE (mm) 4.75				F	PERCENT PA	SSING	
		2.36				100		
		1.18		-		100 99		
		0.600				99		
		0.425				and the second se		
		0.425 0.300				93		
		0.425				and the second se		
	100	0.425 0.300 0.150				93 33		
	100 - 90 -	0.425 0.300 0.150			•	93 33		
		0.425 0.300 0.150			8	93 33		
	90 - 80 -	0.425 0.300 0.150				93 33		
	90 - 80 -	0.425 0.300 0.150				93 33		
	90 - 80 -	0.425 0.300 0.150			8	93 33		
	90 - 80 -	0.425 0.300 0.150				93 33		
	90 80 60 50	0.425 0.300 0.150				93 33		
	90 - 80 -	0.425 0.300 0.150				93 33		
	90 - 08 - 08 - 08 - 08 - 08 - 08 - 08 - 0	0.425 0.300 0.150			9	93 33		
	90 80 70 60 40 40 20 10 0	0.425 0.300 0.150 0.075				93 33 22		
	90 80 70 80 60 40 40 40 20 20 10	0.425 0.300 0.150 0.075	0.10	1.00	2	93 33	10	00.00
	90 80 70 60 40 40 20 10 0	0.425 0.300 0.150 0.075		1.00 ze (mm)		93 33 22	10	00.00

	N				Albior	ESTI ERVI		ſ	TOCS
Accredited for		INICAL PETENCE	60/IEC 17025 -			N QLD 4 61 (07) 32	010 256 2900		Quality Contines of Amplitude Books
				LE SIZE D		all the set of the set			
				ire: AS1289.3.6 ire: AS1289.2.1		-	est Procedure: est Procedure:		
Client:	Econo	mic Deve	elopment Que	ensland	Sam Date		5/06/2020	Tested by and Date:	FC/CT 23/06/2020
Project:	Oxley PDA - Stage 1A		Cheo	Checked by: CT		Date:	23/06/2020		
Location:	Seventeen Mile Rocks Road, Oxley			Rep	ort No.:	018-118D_	21		
Project No:	018-118D				THIS DOCUMENT SHALL NOT BE REPRODUCED				
	Sample No.: Sampling Method:					T2006-2	and the second se		
			iod: ire Content (%):		A	S1289.1.2.1 16.5	CI.6.5.3	
	Bore:						103		
	Depth (m):					4.6-4.72	2		
	AS SIEVE SIZE (mm)					P	PERCENT PA	SSING	
			2.36 1.18				100 100		
			0.600				99		
			0.425			97 83 26 15			
			0.300						
			0.075						
	1	.00							
		90			m				
		80		1					
	1.1	70							
) Gu	60							
		50							
	ass								
	nt Pass	10							
	srcent Pass	40							
	Percent F	30						second participation in the local second	
		30 20		1					
		30 20 10							
		30 20		0.10	1.00		10.00	10	00.00
		30 20 10 0			1.00 ve Size (mm)		10.00	10	00.00

4	COMPETENCE		Albion Laborato 11 Moore Stre ALBION QLD 4 ephone 61 (07) 32 accreditation No. 1	et 010 256 2900		Guality Certified Autor Corde
Accredited for	compliance with ISC	0/IEC 17025 - Testing				
		PARTICLE SIZE DIST	TRIBUTION 1	EST REP	PORT	
		Test Procedure: AS1289.3.6.1 Test Procedure: AS1289.2.1.1		est Procedure: est Procedure:		
-		Test Flocedule. A31209.2.1.1		est Frocedure.	QTUSE	
Client:	Economic Devel	opment Queensland	Sample Date:	2/06/2020	Tested by and Date:	FC/CT 23/06/2020
Project:	Oxley PDA - Stage 1A		Checked by:	ст	Date:	23/06/2020
Location:	Seventeen Mile I	Rocks Road, Oxley	Report No.:	018-118D_	PSD_T2006-	23
Project No:	018-118D		THIS DOCU	JMENT SHALL	NOT BE REPRO	DUCED EXCEPT IN FULL
	Sample No.:	n administration in		T2006-2	3	
	Sampling Metho		A	S1289.1.2.1	Cl.6.5.3	
	Sample Moistur Bore:	e Content (%):		12.4 104		
	Depth (m):			3.0-3.45	5	
		The second s			11111 CI	
	AS	SIEVE SIZE (mm)	Р	ERCENT PA	SSING	
		4.75 2.36		100 99		
		1.18		99		
		0.600		98		
		0.425 0.300		98 98		
		0.150		97		
		0.075		92		
	100					8
	90					
	80					
	8 70					
	Percent Passing (%) 09 09 00					
	50 Jas					
	tu 40					
	30					
	20					5
	10 -					
	0			1178		8
	0.01	0.10	1.00	10.00	10	0.00
		Sieve Si				
Comments:			Authorised Si	gnatory		
			hunth	E		23 June 2020
			Massar .			

Comments:			Authorised				
	0.01	0.10 Sieve	1.00 Size (mm)	10.00	10	00.00	
	10						
	20						
	Percent Passing (%) 0 - 00 0						
	60 see 50						
	(%) 6L 60						
	80	///////////////////////////////////////					
	90						
	100		e	-	1 1 1 1 1 1 1		
		0.150 0.075	16				
		0.300		100 98 76 25			
		0.600 0.425					
		1.18		100			
	A0 010	4.75 2.36		100 100			
		EVE SIZE (mm)		PERCENT PA	SSING		
	Depth (m):			6.0-6.1	4		
	Bore:	ontent (70).		104			
	Sampling Method: Sample Moisture C	ontent (%):		AS1289.1.2.1 22.4			
	Sample No.:		T2006-11				
Project No:			THIS DOCUMENT SHALL NOT BE REPRODU				
Location:	Seventeen Mile Rocks Road, Oxley			Report No.: 018-118D_I		.11	
Project:	Oxley PDA - Stage 1A		Checked by	ст	Date:	17/06/2020	
Client:	Economic Developm	ent Queensland	Sample Date:	2/06/2020	Tested by and Date:	FC/CT 16/06/2020	
		t Procedure: AS1289.2.1.1	1	Test Procedure			
		ARTICLE SIZE DIS at Procedure: AS1289.3.6.1		TEST RE			
Accredited for	compliance with ISO/IE		TRIBUTION	TEOT DE	DODT		
	COMPETENCE		Accreditation No				
	ADDREDITED FOR	Te	ALBION QLD lephone 61 (07)			Quality Cartified	
	NATA		11 Moore St	reet			
	~		Albion Labora		(TOCSL	
			S SEBV	ING			
			S SERV	JND ING /ICES			

		0.600 0.425 0.300 0.150 0.075		100 100 100 99 99 99 99			
		SIEVE SIZE (mm) 2.36 1.18		PERCENT PA 100 100			
	Sample No.: Sampling Meth Sample Moistur Bore: Depth (m):		T2006-25 AS1289.1.2.1 CI.6.5.3 20.2 104 15.0-15.43				
Location: Project No:	Seventeen Mile	Rocks Road, Oxley	Report No.:	: 018-118D_	PSD_T2006-	T2006-25	
Client: Project:	Economic Development Queensland Oxley PDA - Stage 1A		Sample Date: 2/06/202 Checked by: CT		Tested by and Date: Date:	FC/CT 23/06/2020 23/06/2020	
	1	PARTICLE SIZE DIST Test Procedure: AS1289.3.6.1 Test Procedure: AS1289.2.1.1		TEST REI Test Procedure Test Procedure	: Q103A		

Material Test Report

Report Number:	018-118D-3A
Issue Number:	1
Date Issued:	13/07/2020
Client:	Economic Development Queensland
	Level 14, 1 William Street, Brisbane QLD 4000
Project Number:	018-118D
Project Name:	Oxley PDA - Stage 1A
Project Location:	Seventeen Mile Rocks Road, Oxley
Work Request:	1188
Sample Number:	G20-1188A
Date Sampled:	04/07/2020
Dates Tested:	08/07/2020 - 10/07/2020
Sampling Method:	AS 1289.1.2.1 6.5.3 - Power auger drilling
Sample Location:	Bore 105, Depth: 10.0 - 10.45m

Ground Testing Services Pty Ltd Gold Coast Laboratory 2/23 Traders Way Currumbin QLD 4223 Phone: (07) 5535 2539 Email: enquiries@groundtestingservices.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED

Approved Signatory: Rede Irwin

Laboratory Manager NATA Accredited Laboratory Number: 18820

Particle Size Distribution

1

Sieve	Passed %	Passing Limits	Retained %	Retained Limits
0.3 mm	100		0	
0.15 mm	100		0	
0.075 mm	99		1	

Report Number: 018-118D-3A

100 90 80 70 60 50 40 40 20 10 0 0.01	0.075 0.075 0.10 0.10 Sieve S	1.00 ize (mm)	10.00	10	00.00
90 - 80 - 90 - 90 - 90 - 90 - 90 - 90 -		1.00		10	10.00
90 Bercent Passing (%) 40 50 40 40 20 20 10 10	0.075				
Percent Passing (%) 06 07 08 09 06 09 06 00 05 00 00 00 00 00 00 00 00 00 00 00	0.075				
90 - 80 -	0.075				
90 - 80 -	0.075				
90 - 80 -	0.075		•		
90 - 80 -	0.075				
	0.075		•		
	0.075				
	0.075		90		
	0.150		97 96		
	0.425		98	W. CHUTHIN, M	
	1.18 0.600		99 99		
	4.75 2.36		100 100		
А	S SIEVE SIZE (mm)	P	ERCENT PA	SSING	
Jepth (m):			10.5-10.7	/5	
Bore:	are content (%):		105	75	
Sampling Meth		A	S1289.1.2.1		
		THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT			
Seventeen Mile Rocks Road, Oxley		Report No.:	018-118D_	PSD_T2006-	27
Oxley PDA - Stage 1A		Checked by:	СТ	Date:	23/06/2020
Economic Deve	elopment Queensland	Sample Date:	9/06/2020	Tested by and Date:	FC/CT 23/06/2020
	Test Procedure: AS1289.3.6.1 Test Procedure: AS1289.2.1.1				
omphance with to		TRIBUTION	TEST REF	PORT	
		ccreditation No.	19529		
	Tele	ALBION QLD 4 ephone 61 (07) 32	010 256 2900		Quality Certified
NATA				(TOCSL
		5 SERVI	CES		
	Economic Deve Oxley PDA - S Seventeen Mile 118-118D Sample No.: Sample Moistr Sore: Depth (m):	COMPETENCE A Compliance with ISO/IEC 17025 - Testing Career Procedure: AS1289.3.6.1 Test Procedure: AS1289.3.6.1 Test Procedure: AS1289.2.1.1 Conomic Development Queensland Coxley PDA - Stage 1A Coventeen Mile Rocks Road, Oxley Complex No.: Complex No.	Albion Laboration 11 Moore Stress ALBION QLD 4 Telephone 61 (07) 32 Accreditation No. 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Accreditation No. 19529 Accreditation No. 19529 Dampliance with ISO/IEC 17025 - Testing PARTICLE SIZE DISTRIBUTION TEST REF Test Procedure: AS1289.3.6.1 ✓ Test Procedure: AS1289.2.1.1 ✓ Test Procedure: AS1289.2.1.1 ✓ Test Procedure: AS1289.2.1.1 ✓ Economic Development Queensland Sample Date: Oxley PDA - Stage 1A Checked by: CT Create the second of	Albion Laboratory 11 Moore Street ALBION QLD 4010 Telephone 61 (07) 3256 2900 Accreditation No. 19529 Dempliance with ISO/IEC 17025 - Testing PARTICLE SIZE DISTRIBUTION TEST REPORT Test Procedure: AS1289.3.6.1 Test Procedure: AS1289.2.1.1 Test Procedure: Q103A Test Procedure: Q103B Test Procedure: AS1289.2.1.1 Test Procedure: Q103B Test Procedure: Q103B Test Procedure: Q103B Conomic Development Queensland Date: 9/06/2020 Tested by and Date: Oxley PDA - Stage 1A Checked by: CT Date: Oxley PDA - Stage 1A Checked by: CT Date: Date: 018-118D THIS DOCUMENT SHALL NOT BE REPRO Tample No.: 12006-27 Sample Moisture Content (%): 22.6 Sore: 0105 Depth (m): 10.5-10.75 AS SIEVE SIZE (mm) PERCENT PASSING 4.75 100 2.36 100 1.18 99 0.600 99 0.425 98 0.300 98 0.150 97

			sting	creditation No. 19	6 2900 529						
			E SIZE DISTR	and the location of the		EPORT	[]				
			e: AS1289.2.1.1			lure: Q103B					
Client:	Economic Dev	elopment Queens	sland	Tested by:	NJ	Date:	5/10/2018				
Project:	Broadscale Slo	ope Stability Asse	ssment	Checked by:	СТ	Date:	8/10/2018				
ocation:	Former Oxley Road, Oxley	Secondary Colleg	je, Blackheath	Report No.:	018-11	8B_PSD_T18	310-02				
Project No:	018-118B			THIS DOCU	MENT SH	ALL NOT BE REP	RODUCED EXCEPT IN FULL				
	Sample No.:					10-02					
	Sampling Met			AS	and the second s	2.1 Cl.6.5.3					
	Sample Moist Bore:	ure Content (%):	<u></u>		and the second se	.7 7					
	Depth (m):					9.05					
	1										
		AS SIEVE SIZE (9.5	mm)	PERCENT PASSING 100							
	-	6.7		99							
		4.75		_	9	6					
		2.36									
		0.600		51							
	-	0.425			3						
		0.150		-	2	7					
		0.075			1:						
	100		-	1	-						
	90			/							
	80			/	1						
	8 70		1 1 1	/							
	Percent Passing (%) 09 09 09 00 00 00 00		1	1	11.1		and a second at second at a se				
	se 50		1								
	tu 40	V-1-197-H	1			1. 1. 1.					
	2 30		-	-			<u>64</u>				
	20	1	/				-				
	10	1			-						
	0										
	0.01	0.1		1.00	10.00	1	100.00				
	Sieve Size (mm)										

Accredited for	Compliance with IS	O/IEC 17025 - Testing	Albion Laborat Albion Laborat 11 Moore Stre ALBION QLD elephone 61 (07) 3 Accreditation No.	ory eet 4010 256 2900					
		PARTICLE SIZE DI Test Procedure: AS1289.3.6. Test Procedure: AS1289.2.1.	1 []	Test Proce	EPORT dure: Q103A dure: Q103B				
Client:	Economic Deve	lopment Queensland	Tested by:	NJ	Date:	5/10/2018			
Project:	Broadscale Slop	e Stability Assessment	Checked by	/: CT	Date:	8/10/2018			
Location:	the second se	econdary College, Blackheath			18B_PSD_T1	1 Providence			
Project No:			THIS DO	CUMENT SH	ALL NOT BE RE	PRODUCED EXCEPT	IN FULL		
	Sample No.: Sampling Meth Sample Moistu Bore: Depth (m):	od: re Content (%):		T1810-12 AS1289.1.2.1 Cl.6.5.3 10.0 19 4.5 - 4.95					
	A	S SIEVE SIZE (mm) 4.75 2.36 1.18 0.600 0.425 0.300 0.150 0.075		PERCENT PASSING 100 100 99 99 99 99 99 70 40					
	100 90 80 70 60 50 40 30 20 10 0 0.01	0.10	1.00	10.00		100.00			
Comments:		Sieve	Size (mm) Authorised Chris Lux			Date 30.	10.18		

Comments:	Linear				Authorised S Mumphan Craig Tucke	Ł		6 Februa Date	ry 2019	
				Sieve Size (mm)					
	0.03	1	0.10		.00	10.00		100.00		
	0							非正 -		
	10									
	20 -									
	a 40 1									
	07 ent Pas									
	Percent Passing (%)									
	(%) 70 -		1							
	80 -		1							
	90 -			And						
	100 T		81			-		100		
		0.075	5	an annaimeach an ana	de som over					
		0.150)			8	5			
		0.425			-	92				
		0.600	1		1					
		2.36 1.18								
		4.75			1	90	8			
	-	9.5 6.7		and the second second		10	0			
		AS SIEVE SIZ	ZE (mn	1)	P					
	Bore: Depth (m):									
		sture Content ((%):			14	1312			
	Sample No.: Sampling Me				As	T1901 S1289.1.2	2.1 Cl.6.5.3			
Project No:				THIS DOCL	PRODUCED EX	CEPT IN FULL				
Location:	Former Oxley Secondary College, Blackheath Road, Oxley				Report No.:	8B_PSD_T1				
Project:	And and a second s	the second s			Checked by:	СТ	Date:	6/02/201	Э	
Client:	Economic Development Queensland Broadscale Slope Stability Assessment				Tested by:	KH	Date:	6/02/201		
	1	Test Procee	dure: A	S1289.2.1.1		est Procedi	ure: Q103B			
				S1289.3.6.1	the second se		ure: Q103A			
Accredited for	compliance with	• ISO/IEC 17025 -		, SIZE DISTR	BUTION T	EST RE	PORT			
	COMPETENCE				editation No. 19	9529				
	TECHNICAL		one 61 (07) 325							
	NATA	•			11 Moore Street LBION QLD 4010					
	~			A	lbion Laborator	у				
				S	SERVIC	CES				
				S	GROUN TESTIN	ID				
				-						

Accredited for		th ISO/IEC 17025 - Te	Telep Ac	GROUN TESTIN SERVIO Albion Laborato 11 Moore Stree ALBION QLD 4 shone 61 (07) 32 ccreditation No. 1	JG CES my et 010 56 2900				
	oomphanee m		E SIZE DIST	RIBUTION T	EST R	EPORT			
			e: AS1289.3.6.1	- Second second		dure: Q103A	-		
data ang sa		Test Procedur	e: AS1289.2.1.1		Test Proced	dure: Q103B			
Client:	Economic D	Development Queen	sland	Tested by:	кн	Date:	4/02/2019		
Project:		Slope Stability Asse		Checked by:	СТ	Date:	5/02/2019		
Location:	Former Oxle	ey Secondary Colle y	Report No.:	018-11	18B_PSD_T19	01-209			
Project No:				THIS DOC	UMENT SH	ALL NOT BE REPI	RODUCED EXCE	PT IN FULL	
	Sample No			1	T190	1-209			
	Sampling M	Aethod:		A	S1289.1.	2.1 Cl.6.5.3			
	Sample Mo Bore:	isture Content (%)	:			0.4 28			
	Depth (m):					-0.95			
		AS SIEVE SIZE	(mm)	F	PERCENT	PASSING			
		9.5		100					
		6.7 4.75				99 99			
		2.36			9	97			
		1.18				94			
		0.600				93 92			
		0.300			9	91			
		0.150			8	34			
		0.075	n hun in the		/	2			
	100			-			H		
	90 -			11 11			- All All All All All All All All All Al		
	80 -								
	Percent Passing (%) - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0								
	- 09 -								
	Bas 20 -								
	40 -								
	Je 30 -								
	20 -								
	10 -					무리네			
	0 -								
	0.0	01 0.	10	1.00	10.00	1	.00.00		
			Sieve Siz	e (mm)					
Comments:				Authorised	the	V	5 February 2	2019	

Comments:			Authori	sed Si	gnatory				
Commente		Sieve				0			
	0.01	0.10 Sieve	1.00 Size (mm)		10.00		100.00		
	0		1.00	1	10.00				
	10								
	20								
	Percent Passing (%)								
	40								
	0								
	(%) 70								
	80								
	90								
	100	3				· · · · · · · · · · · · · · · · · · ·			
		0.150			83				
		0.300 0.150			96 91				
		0.600 0.425			98 97				
		1.18			99				
		4.75 2.36		100					
	AS SI	EVE SIZE (mm)		PERCENT PASSING					
					0.0 0				
	Bore: Depth (m):			38 3.0-3.45					
	Sampling Method: Sample Moisture Co	ontent (%):		AS	1289.1.2.1 25.0	Characterization and the state			
	Sample No.:	and a second second		40	T1905-	- and the state of			
Project No:	the state of the s		THIS	DOCUN	MENT SHALL	NOT BE REP	RODUCED EXCEPT	IN FUL	
Location:	Former Oxley Secon Blackheath Road, Ox		Report	No.:	018-118B_PSD_T1905-0		05-02	12	
Project:		t Village and Child Care		-	ст	Date:	8/05/2019		
Client:	Economic Developm	ent Queensland	Tested I	oy:	СТ	Date:	1/05/2019		
	Τε	est Procedure: AS1289.2.1.	1 🗸	Tes	st Procedure	e: Q103B			
		est Procedure: AS1289.3.6.	procession of the local division of the loca		SI REP				
Accreated for	compliance with ISO/IE	ARTICLE SIZE DI	STRIBUTIO		ST DE	OPT			
Accredited for		C 17025 - Testing	Accreditation N	No. 195	529		Ouality ISO 9001		
		т	elephone 61 (07	Albion Laboratory 11 Moore Street LBION QLD 4010 none 61 (07) 3256 2900					
	NATA		11 Moore						
	~		and a second second second second						
		(GRO SERV	IN	G_				
				- 14	_				