

PLANS AND DOCUMENTS referred to in the PDA DEVELOPMENT APPROVAL Approval no: DEV2018/961

Date: 10 September 2021

TRAFFIC IMPACT ASSESSMENT

PROPOSED INDUSTRIAL ESTATE 4499 – 4651 MOUNT LINDESAY HIGHWAY, NORTH MACLEAN LOT 39 ON SP258739 (In Response to Further Issues Dated 18th November, 2018)

Prepared for WEARCO PTY LTD

1 MARCH 2019

DOCUMENT REGISTER

Document	North Maclean SDA Traffic Impact Assessment	
RTE Reference	16378	
Date	1 March 2019	
Prepared by	Luke Rytenskild, Dare Janzekovic	

Document History

			1	
Version	Version date	Details	Reviewed and Auth	orised
			Name / Position	Signature
2	6 August 2018	DA Submission	Luke Rytenskild	liftemk//
			Director RPEQ 6293	" Kytan KI/
3	1 March 2019	Further Issues	Luke Rytenskild	Real 11
			Director RPEQ 6293	12 ytomk//

COPYRIGHT NOTICE

© Copyright CRG Traffic Pty Ltd All Rights Reserved. Copyright in the whole and every part of this document belongs to CRG Traffic Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written consent of CRG Traffic Pty Ltd.

COMPANY INFORMATION

CRG Traffic Pty Ltd as trustee for the Rytenskild CRG Trust trading as Rytenskild Traffic Group ABN 24 401 134 418 ACN 151 846 847 Director: Luke Rytenskild RPEQ 6293

Suite 8, Level 1 66 Appel Street (PO Box 17) Surfers Paradise QLD 4217 Level 5 320 Adelaide Street Brisbane QLD 4000 Level 26 44 Market Street Sydney NSW 2000

Phone:	1300 220020
Facsimile:	1300 087177
Email:	info@rytenskildtraffic.com
Web:	www.rytenskildtraffic.com

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	SUBJECT SITE
2.1	Location of Subject Site
2.2	Existing Road Network9
2.3	Planning Future Road Network 12
3.0	DEVELOPMENT PROPOSAL
3.1	Proposed Layout17
3.2	Vehicle Access
4.0	DEVELOPMENT TRAFFIC
4.1	Trip Generation
4.2	Traffic Distribution
4.3	Road Network Impact
5.0	RESPONSIBILITY FOR SERVICE ROAD CONSTRUCTION
6.0	SUMMARY OF CONCLUSIONS & RECOMMENDATIONS
APPE	NDICES
APP	ENDIX A – PERFORMANCE CRITERIA (INTERSECTION PERFORMANCE)
APP	ENDIX B – SIDRA MODELLING (INTERIM INTERSECTION ON CROWSON LANE)
APP	ENDIX C – SIDRA MODELLING (ULTIMATE INTERSECTION ON CROWSON LANE)
APP	PENDIX D – SIDRA MODELLING (CROWSON LANE / HIGHWAY SERVICE ROAD)

1.0 INTRODUCTION

Rytenskild Traffic Engineering (RTE) has been engaged by Wearco Pty Ltd to prepare a Traffic Impact Assessment of its proposed industrial subdivision at North Maclean.

The site forms part of the Great Flagstone Priority Development Area and therefore this report forms part of an application to be lodged with the Department of Infrastructure, Local Government and Planning for assessment.

This version of the report responds to the following Further Issues raised by EDQ. A brief response is provided in relation to each, with further detailes provided in the report.

<u>2) Transport Network</u> a) EDQ is seeking a connection (link road) between the existing cul de sacs

Response:

The proposed masterplan has been modified and no longer contains any cul-de-sac roads.

b) EDQ is also seeking

- that an 8m dedication be shown on the subdivision plan. EDQ indicated that this Crowson Lane dedication would be considered trunk infrastructure and infrastructure credits would apply
- that an interim design for the intersection with Crowson Lane be allowed for in the subdivision design and shown on the plans

There was also discussion around the ability of the proposed north-south road running adjacent to the Mt Lindsay Highway to fulfil the function of the indicative north-south 'Regional Road' shown on Maps 2 & 3 of the Development Scheme. The road will provide direct access to all the remaining lots in the PDA fronting the Mt Lindsay highway in circumstances where alternative internal PDA access to the north may not be possible or severely impact PDA layouts due to potential environmental values and protection within PDA Lot 1 on RP113251. In this respect the road will serve a 'trunk' purpose.

It was also discussed that whilst service roads generally do not form part of the trunk network, the construction of the road as part of the proposal would be of mutual benefit to the proponent and the State. Access to lots off the service road would be designed appropriately (adequate separation of driveways, vehicle queuing etc) so to not compromise the future function of the service road. Such is typical of similar service road systems throughout south east Queensland (eg Pacific Mway service road system through at Ormeau and Yatala), and therefore the cost of constructing the service road, if carried out as part of the project, should be shared between the project and the State. That is, a proportion of the cost should be creditable.

Response:

An allowance for the 8.0 metre dedication has been provided on the latest masterplan.

Indicative plans of the interim and ultimate access arrangements are shown in Section 3.2. SIDRA modelling has been carried out for each of these scenarios. The SIDRA modelling indicates that the interim layout will function satisfactorily for a considerable period of time. The need and timing for traffic signals largely depends on future background traffic growth on Crowson Lane. It is recommended that further traffic modelling be carried out at each stage of the development to determine the required timing for signals.

It is noted that any upgrade works to Crowson Lane, including land dedication is considered to be trunk and therefore creditable

Commentary in relation to the applicant's responsibility for the cost of constructing the north – south service road is provided in section 5.

c) EDQ is seeking some advice in relation to how the stormwater management devices and biodiversity areas can be accessed for maintenance purposes

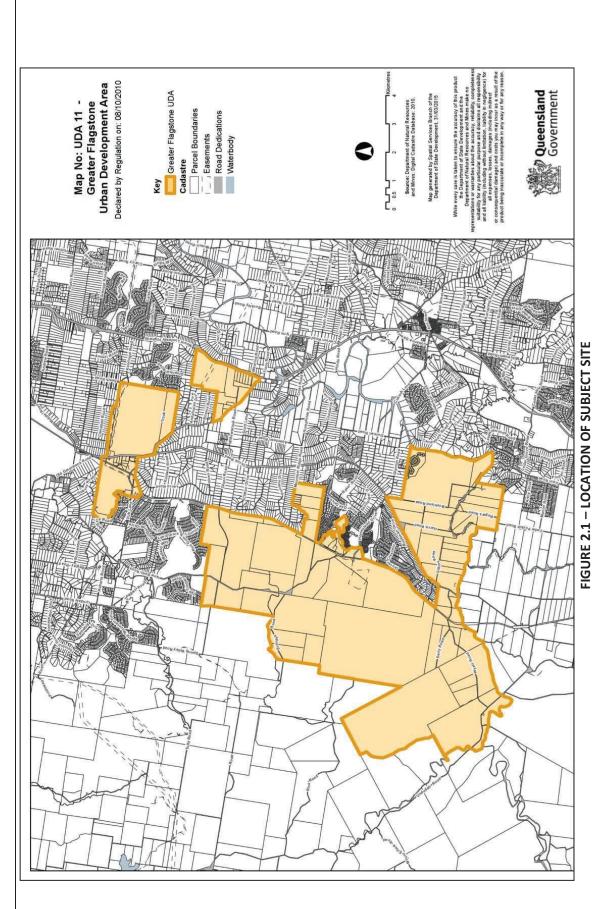
Response:

This item has been addressed by the projects Civil Engineers.

d) EDQ is seeking further information and review on the trip generation rates proposed as part of the traffic report submitted with the application.

Response:

Trip generation rates have been based on surveys of other large industrial developments at Yatala. A copy of these surveys has been provided as Appendix A. A sensitivity analysis has been carried out using a trip rate of 0.4 trips per 100m² of GFA, which is specified as being appropriate forwarehouse style development in the TMR Road Planning and Design Manual. It is recommended that further traffic analysis be carried out ona stage by stage basis, using actual development trip generation rates, which can be surveyed at that time.


2.0 SUBJECT SITE

2.1 Location of Subject Site

The site is located within the Greater Flagstone Priority Development Area (GFPDA), and is part of the North Maclean Industry and Business Zone. The location of the site within the context of the GFPDA is shown in Figure 2.1.

As shown in Figure 2.2, the subject site is located to the southwest of the Mount Lindesay Highway / Crowson Lane interchange roundabout, and is formally identified as Lot 39 on SP258739. The site has an area of approximately 118 hectares.

Page **7** of **50**

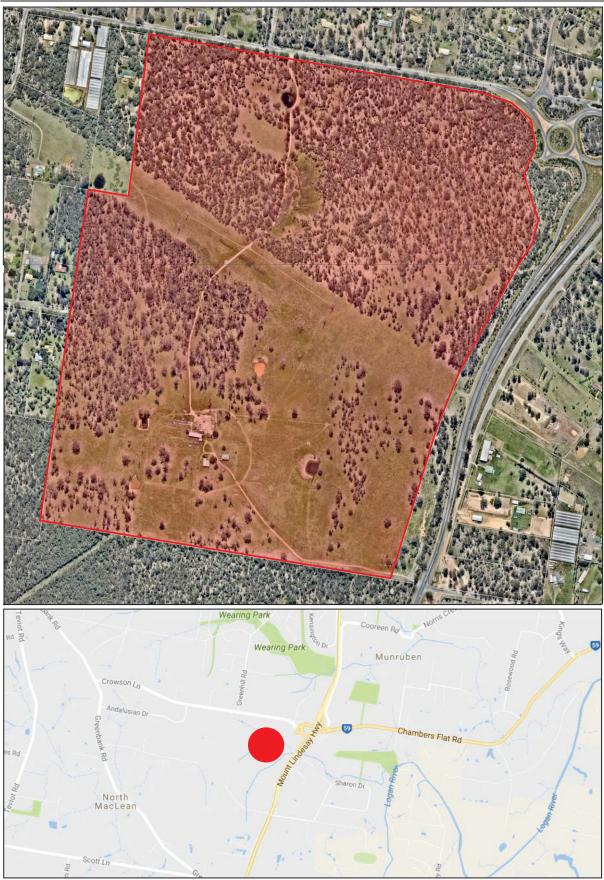


FIGURE 2.2 – LOCATION OF SUBJECT SITE

2.2 Existing Road Network

Crowson Lane is a two lane rural road providing through movement between the Mount Lindesay Highway and Greenbank Road, and also access to adjoining rural residential properties. Crowson Lane generally has a posted speed limit of 80km/hr, with a reduced speed limit of 60km/hr near the Mount Lindesay Highway interchange. Crowson Lane intersects with the Mount Lindesay Highway interchange via a single lane roundabout which was constructed as part of the Mount Lindesay Highway upgrade.

The Mount Lindesay Highway is a State controlled road and is the primary arterial route south of the Logan Motorway and west of the Pacific Motorway. Adjacent to the subject site the highway has been upgraded to a dual carriageway road however currently only a single lane is provided in each direction. The highway has been designed to suit a future upgrade to four lanes.

The Mount Lindesay Highway / Chambers Flat Road / Crowson Lane interchange comprises of a roundabout on each side with a connecting overbridge. On and off ramps to the Highway are provided for each direction of travel.

Images of Crowson Lane and the Crowson Lane / Mount Lindesay Highway interchange are shown in Figures 2.3 to 2.4.

FIGURE 2.3 – IMAGES OF CROWSON LANE ADJACENT TO THE SITE

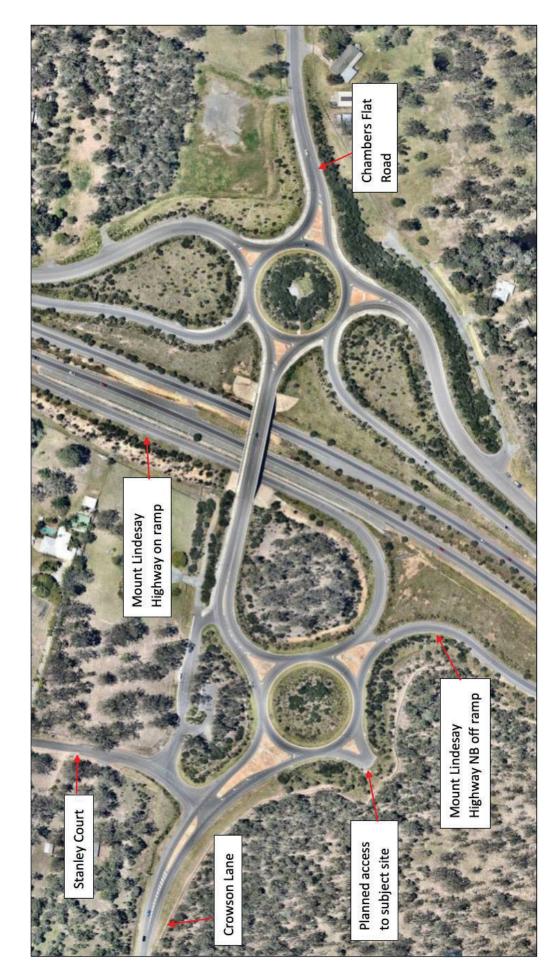


FIGURE 2.4 – EXISTING INTERCHANGE BETWEEN MT LINDESAY HIGHWAY AND CHAMBERS FLAT ROAD AND CROWSON LANE

Page **10** of **50**

Rytenskild Traffic Engineering carried out peak period traffic counts at the Mt Lindesay Highway / Crowson Lane intersection (roundabout) in November 2016. A summary of the surveyed peak hour volumes is provided below. As shown, traffic volumes at the intersection are currently low and particularly on the Crowson Lane leg.

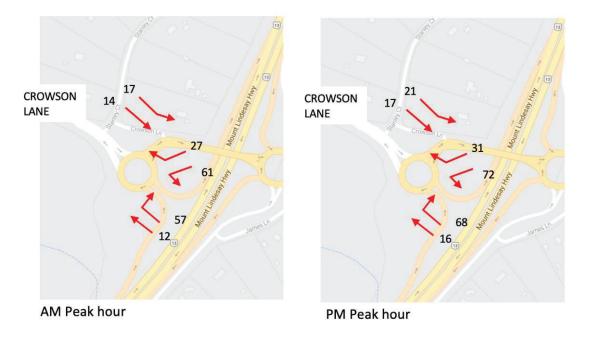


FIGURE 2.5 – SURVEYED (2016) PEAK HOUR TRAFFIC VOLUMES AT THE MT LINDESAY HIGHWAY / CROWSON LANE INTERSECTION

2.3 Planning Future Road Network

Detailed road network planning has been carried out as part of studies associated with the Greater Flagstone Priority Development Area (GFPDA) and also by TMR. As shown in Figures 2.6 – 2.9, it is intended that Crowson Lane will upgraded to a major east/west link connecting the Mount Lindesay Highway to Greenbank Road and Teviot Road. The TMR West Mount Lindesay Highway Development Corridor Major Road Network Study prepared in 2010 states the following objectives in relation to Crowson Lane:

Crowson Lane	Upgrade the corridor to provide for major traffic growth and travel demand.
	Improve pedestrian and cycle facilities adjacent and across the corridor.
	Ensure existing sensitive land uses are appropriately mitigated from the adverse impacts of traffic growth or transitioned to less sensitive uses over time.
	Minimise the number of access points to improve safety and capacity. Develop an appropriate level of bus priority.

In the West Mount Lindesay Highway study prepared by TMR, it is stated that Crowson Lane, along with other roads in the area, would become a major urban arterial east – west link. As shown in Figure 2.8, Crowson Lane will provide a direct connection between the Mount Lindesay Highway and Teviot Road, which will be the major north -south corridor through Flagstone, extending down too Bromelton.

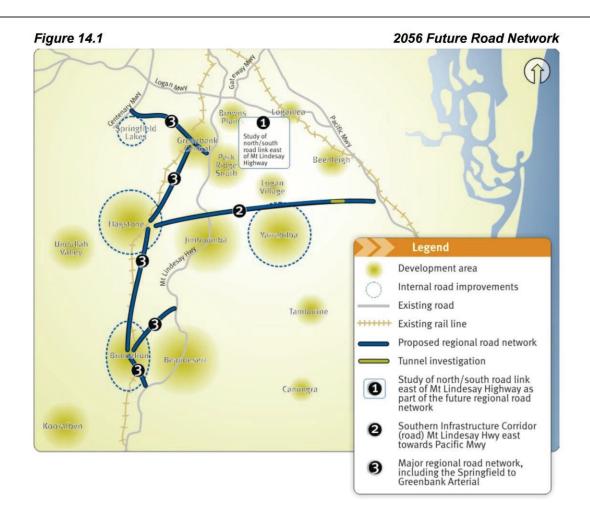


FIGURE 2.6 – PLANNED LONG TERM ROAD NETWORK SOURCE: TMR MT LINDESAY / BEAUDESERT STRATEGIC TRANSPORT NETWORK INVESTIGATION 2009

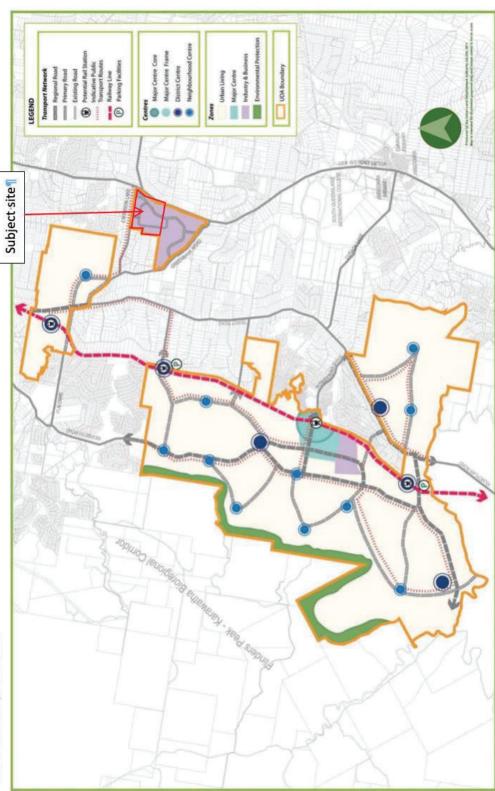
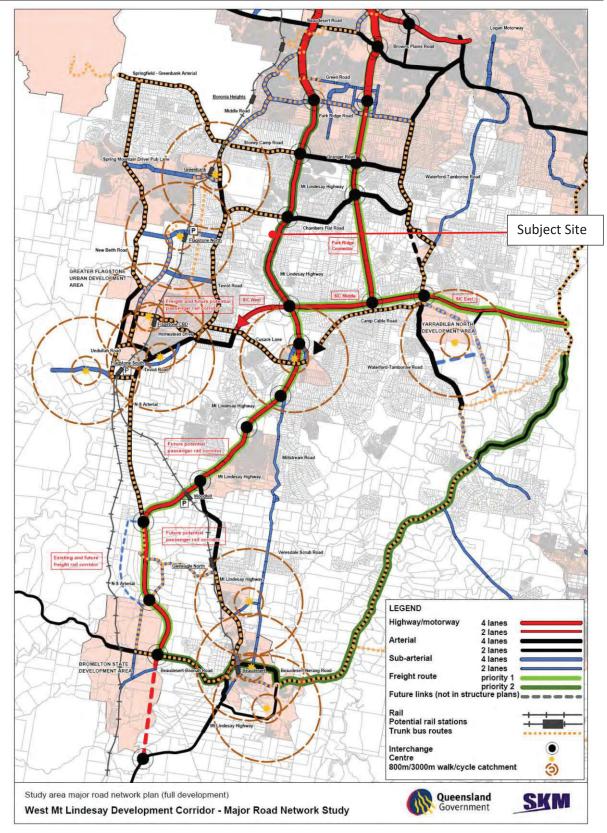



FIGURE 2.7 – STRATEGIC TRANSPORT NETWORK SOURCE: GREATER FLAGSTONE PRIORITY DEVELOPMENT AREA

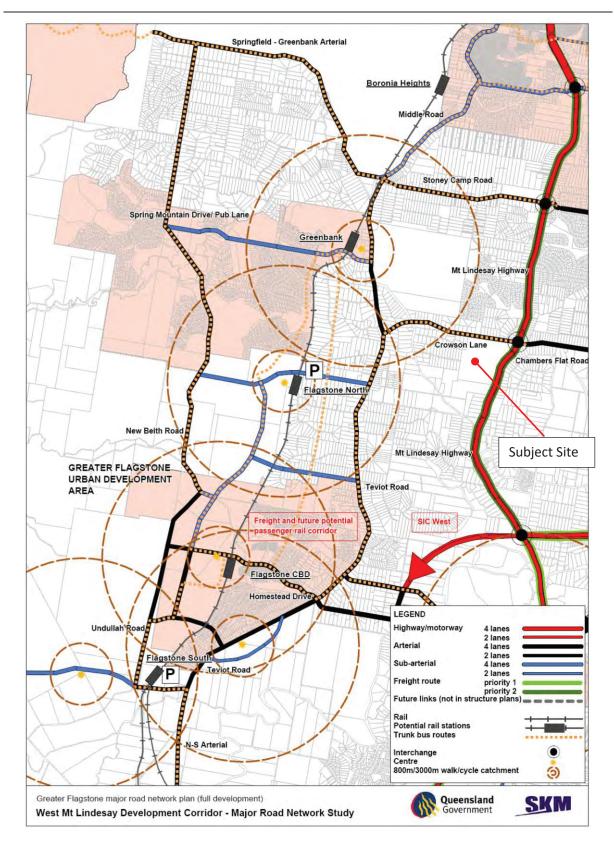


Figure 7.1 Proposed major road network plan for the study area (full development)

FIGURE 2.8 – FUTURE ROAD NETWORK PLANNING (OVERALL NETWORK) SOURCE: WEST MT LINDESAY HWY DEVELOPMENT CORRIDOR MAJOR ROAD NETWORK STUDY 2010

Figure 7.2 Proposed major road network plan for Greater Flagstone

FIGURE 2.9 – FUTURE ROAD NETWORK PLANNING (GREATER FLAGSTONE) SOURCE: WEST MT LINDESAY HWY DEVELOPMENT CORRIDOR MAJOR ROAD NETWORK STUDY 2010

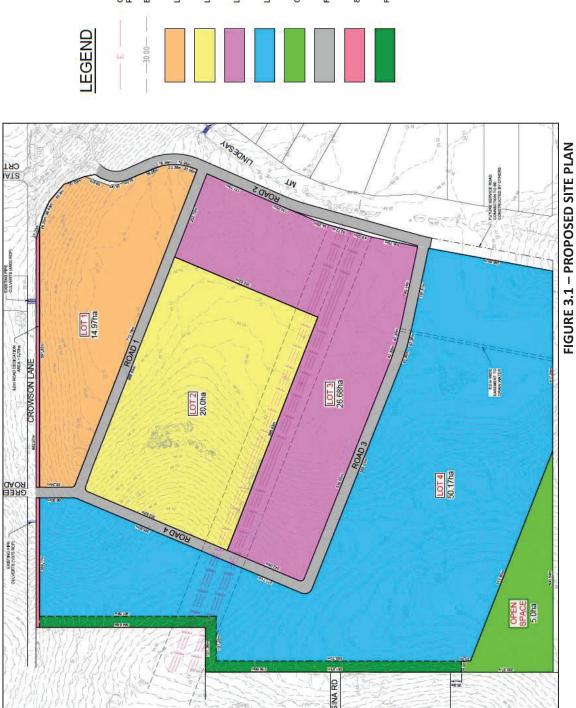
3.0 DEVELOPMENT PROPOSAL

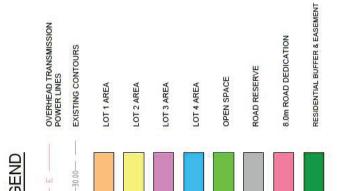
3.1 Proposed Layout

The proposed plan of development comprises of a 4 lot industrial subdivision (refer to Figure 3.1). The areas of the proposed lots are as follows:

Lot 1: 14.97 hectares Lot 2: 20.0 hectares Lot 3: 26.68 hectares Lot 4: 50.17 hectares **Total: 111.82 hectares**

3.2 Vehicle Access


It is proposed that access be gained via the planned service road along the Mt Lindesay Highway frontage of the site, and a new intersection with Crowson Lane, opposite Greenhill Road. It is expected that there will be some individual lot access from the service road. The appropriate location of those access points would be addressed as part of a future application when specific details are known.


The intersection on Crowson Lane will be constructed as a priority controlled junction with dedicated left and right turn lanes. An 8 metre wide land dedication will be provided along the site frontage to achieve a 29 metre wide road reserve. This will allow the Rural Arterial – Single Carriageway to be achieved.

It is envisaged that traffic signals will be required in the long term when Crowson Lane is upgraded to a four lane profile (Urban Collector Road – Multi Modal Dual Carriageway). It is envisaged in the ultimate scenario that a further 8m wide dedication will be provided on the northern side of Crowson Lane. Together with the 8m wide land dedication on the southern site of Crowson Lane provided as part of this application, the required ultimate road reserve width of 37m will be achieved.

Concept plans of the interim and ultimate intersection arrangements are shown in Figures 3.2 and 3.3.

rytenskild Traffic Engineering

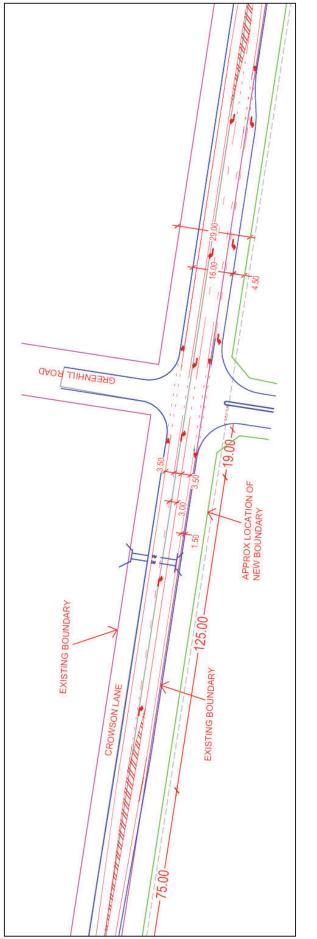


FIGURE 3.2 – PROPOSED INTERSECTION WITH CROWSON LANE (INTERIM LAYOUT)

Page **19** of **50**

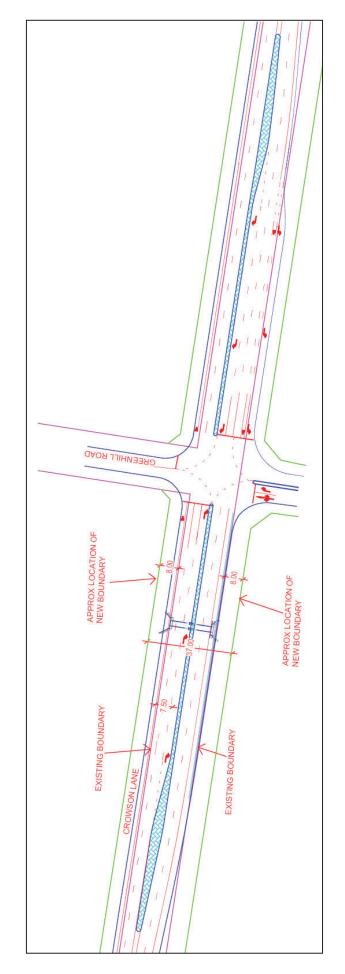


FIGURE 3.3 – PROPOSED INTERSECTION WITH CROWSON LANE (ULTIMATE LAYOUT)

Page **20** of **50**

4.0 DEVELOPMENT TRAFFIC

4.1 Trip Generation

Given the location of the site and the size of the proposed lots, it is expected that the estate will generally be occupied by 'large' users such a warehouses, factories and distribution centres. The following trip rates are considered to be appropriate for the site given its scale and isolation from other industrial areas:

Peak Hour Trips:	0.2 trips per 100m ² GFA
Daily trips -	4 trips per 100m ² GFA

The above rates are based on surveys of a large industrial parcel at Yatala which has similar lot characteristics to the proposal. A sensitivity analysis has also been carried out using a rate of 0.4 peak hour trips / $100m^2$ GFA, which is specified by the TMR RPDM for warehouse uses.

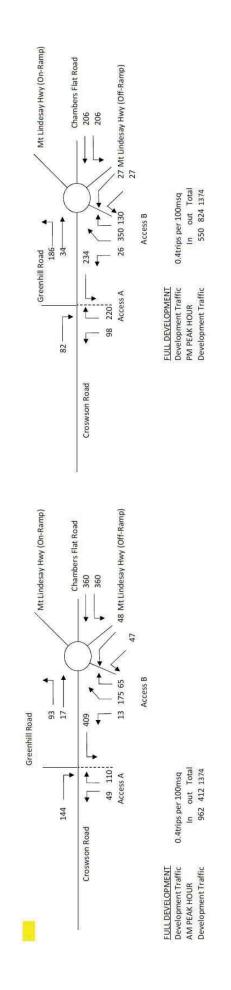
Assuming a 45% site cover to the developable area of 111.82 hectares, the potential total floor area of future development in the estate is 503,000m². Application of the above trip rate (0.4) results in a trip generation estimate of 2,000 vehicle trips per hour.

Table 4.1 – Estimated Development Traffic Generation (peak hour)

M	Morning Peak Hour Afternoon Peak Hour					(Hour
In		Out	Out Total In		Out	Total
1,400)	600	2,000	800	1,200	2,000

Peak Hour Distribution: AM 70 / 30, PM – 40 / 60

4.2 Traffic Distribution


The distribution of trips generated by the estate will vary as the surrounding area and road network develops, particularly large residential estates such as Flagstone and Flinders (to the west), and Yarrabilba (to the east). However, for the purposes of this assessment, the following distribution is considered to be reasonable :

To / from the north on the Mt Lindesay Hwy -	65%
To / from the south on the Mt Lindesay Hwy -	10%
To / from the east via Chambers Flat Road -	10%
To / from the west via Crowson Lane / Greenbank Rd -	15%

The majority of heavy vehicles generated by the estate will travel to and from the north via the Mt Lindesay Highway, connecting to the Logan, Gateway and Pacific Motorways.

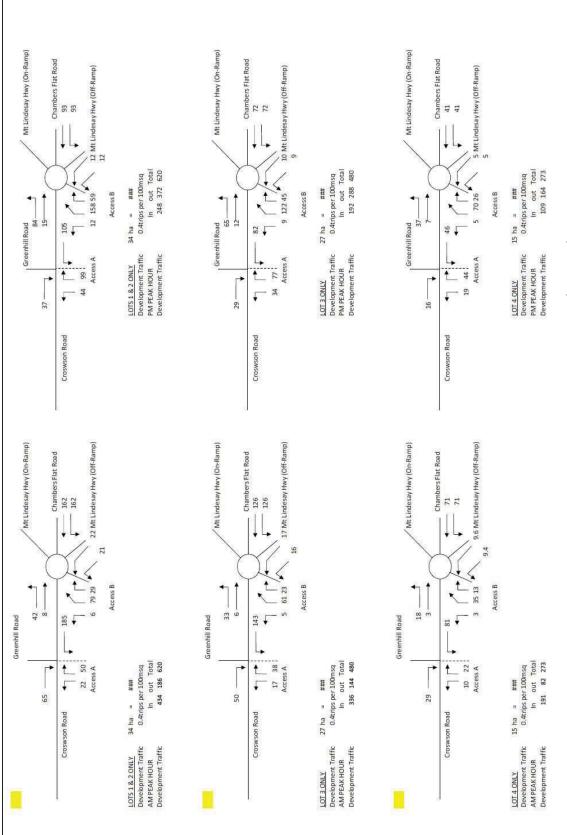

Resultant estimates of peak hour traffic distributions are shown in Figures 4.1 and 4.2.

FIGURE 4.1 – DEVELOPMENT TRAFFIC ESTIMATES (FULL DEVELOPMENT)

rytenskild Traffic Engineering

FIGURE 4.2 – DEVELOPMENT TRAFFIC ESTIMATES (PER LOT)

Page 23 of 50

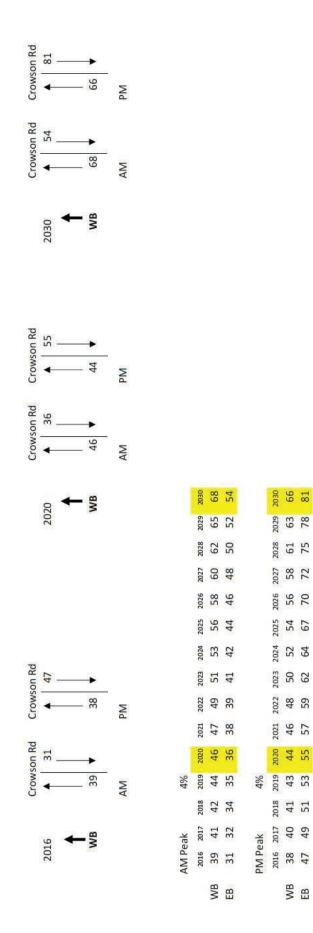


FIGURE 4.3 – ESTIMATES OF FUTURE BACKGROUND GROWTH ON CROWSON LANE

Page **24** of **50**

4.3 Road Network Impact

As shown in Section 2, traffic volumes on Crowson Lane and at the North Maclean interchange are currently low and the single lane on / off ramps and roundabouts function without any significant queuing or delays. As discussed in the West Mount Lindesay Highway Development Corridor Major Road Network Study, it is expected that Crowson Lane will eventually need to be upgraded to a four lane profile.

The traffic generation of the development was accounted for during the design of the Mount Lindesay Highway / Chambers Flat Road / Crowson Lane interchange. However, for completeness an analysis of year 2030 traffic conditions has been carried out to ensure that the roundabout will function satisfactorily under medium term traffic conditions. An annual traffic growth rate of 4% has been applied in order to estimate year 2030 background traffic volumes.

SIDRA software has been used to model the operation of the Mt Lindesay Highway / Crowson Lane roundabout at the year 2030, assuming the full development of the site and the background traffic volumes shown in Figure 4.4.

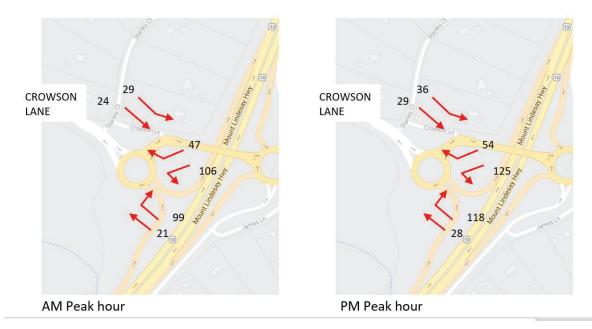
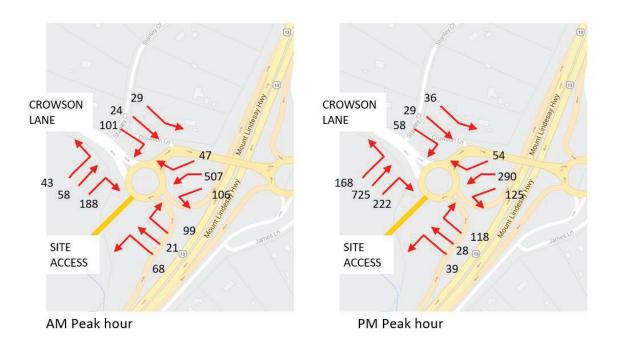



FIGURE 4.4 – ESTIMATED FUTURE BACKGROUND (2030) PEAK HOUR TRAFFIC VOLUMES AT THE MT LINDESAY HWY / CROWSON LANE INTERSECTION

FIGURE 4.5 – ESTIMATED YEAR 2030 PEAK HOUR TRAFFIC VOLUMES AT THE MT LINDESAY HWY / CROWSON LANE INTERSECTION (WITH DEV)

Detailed SIDRA output for the Mt Lindesay Highway / Crowson Lane intersection is provided as Appendix B. As shown, the analysis indicates that the intersection will function satisfactorily under the project year 2030 traffic conditions.

The analysis indicates that a short queue of up to five vehicles will form on the service road approach to the Crowson Lane roundabout. The proposed Road 2 intersection will be located over 200 metres south of the roundabout. As shown in Figure 4.5, traffic modelling indicates that vehicles queuing at the proposed service road / Road 1 intersection will be low and well clear of the Crowson Lane intersection.

The service road will be designed so that there is sufficient width available for southbound through traffic to pass vehicles queued to turn right into the proposed estate roads.

MORNING PEAK HOUR

MOVEMENT SUMMARY

▽ Site: Road 1 / Road 2 North Maclean AM peak

Road 1 (Serv Rd) / Road 2 AM PEAK HOUR Giveway / Yield (Two-Way)

Moven	nent Perform	nance - Vehic	cles								
Mov ID	OD Mov	Deman Total veh/h	id Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/
South:	ROAD 1 (SER	V RD)					22-10				
1	L2	5	20.0	0.092	5.8	LOS A	0.0	0.0	0.00	0.02	57.2
2	T1	153	20.0	0.092	0.0	LOS A	0.0	0.0	0.00	0.02	59.8
Approa	ch	158	20.0	0.092	0.2	NA	0.0	0.0	0.00	0.02	59.7
North: I	ROAD 1 (SERV	V RD)									
8	T1	356	20.0	0.206	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R2	356	20.0	0.258	6.6	LOS A	1.4	11.3	0.35	0.59	51.5
Approa	ch	712	20.0	0.258	3.3	NA	1.4	11.3	0.18	0.29	55.4
West: F	ROAD 2										
10	L2	153	20.0	0.120	6.5	LOS A	0.5	4.2	0.29	0.55	52.5
12	R2	5	20.0	0.019	17.0	LOS C	0.1	0.5	0.75	0.86	44.9
Approa	ch	158	20.0	0.120	6.8	LOS A	0.5	4.2	0.30	0.56	52.2
All Vehi	icles	1027	20.0	0.258	3.4	NA	1.4	11.3	0.17	0.29	55.5

AFTERNOON PEAK HOUR

MOVEMENT SUMMARY

∇ Site: Road 1 / Road 2 North Maclean PM peak

Road 1 (Serv Rd) / Road 2 PM PEAK HOUR Giveway / Yield (Two-Way)

Mov	OD	Deman	d Flows	Deg.	Average	Level of	95% Back (of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh			per veh	km/t
South: I	ROAD 1 (SER	V RD)									
1	L2	5	20.0	0.180	5.8	LOS A	0.0	0.0	0.00	0.01	57.2
2	T1	305	20.0	0.180	0.0	LOS A	0.0	0.0	0.00	0.01	59.9
Approa	ch	311	20.0	0.180	0.1	NA	0.0	0.0	0.00	0.01	59.8
North: F	ROAD 1 (SER	V RD)									
8	T1	203	20.0	0.118	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R2	203	20.0	0.178	7.4	LOS A	0.8	6.8	0.47	0.66	51.2
Approa	ch	406	20.0	0.178	3.7	NA	0.8	6.8	0.23	0.33	55.2
West: F	ROAD 2										
10	L2	305	20.0	0.289	7.6	LOS A	1.3	10.8	0.47	0.67	51.9
12	R2	5	20.0	0.014	13.5	LOS B	0.0	0.4	0.66	0.78	47.0
Approa	ch	311	20.0	0.289	7.7	LOS A	1.3	10.8	0.48	0.67	51.8
All Vehi	cles	1027	20.0	0.289	3.8	NA	1.3	10.8	0.24	0.34	55.4

FIGURE 4.5 – MODELLING OF PROPOSED SERVICE ROAD / ROAD 1 INTERSECTION

5.0 **RESPONSIBILITY FOR SERVICE ROAD CONSTRUCTION**

The proposed road layout includes the construction of the highway service road along the site frontage. It is understood that the service road is planned by TMR, given that land has been taken from the subject site for its future construction. Furthermore, a stub has been provided at the interchange roundabout to establish its alignment.

This is considered to be a highly desirable outcome for the local area for the following reasons:

- The service road will be critical to providing connectivity to the balance of the SDA area to the south and Greenbank Road. It is also an important component of the highway system as it will provide for local trips and allow for alternative movement in the event that the highway needs to be closed due to an incident or road works.
- The future extension of the service road to the south will enable traffic generated by that
 area to access the Mt Lindesay Highway via the existing grade separated interchange at
 Chambers Flat Road / Crowson Lane. Whilst traffic signals are planned to be constructed at
 the Mt Lindesay Highway / Greenbank Road intersection, these are considered to be an
 interim solution until the Highway is grade separated through to Jimboomba. The service
 road will allow access to the existing grade separate interchange, which will reduce pressure
 on and extend the life of the at grade intersection (signals) at Greenbank Road.
- The connection of the service road to the south will allow local trips to occur within the SDA area and other local areas instead of those vehicles having to make short trips on the Highway between Greenbank Road and Crowson Lane.

The connectivity of the proposed road network within the site between Crowson Lane and the service road is an added benefit as it will reduce impact upon the existing roundabout at the Highway / Crowson Lane interchange. The proposal would establish the formation of the service road so that it can be extended as development occurs to the south. This will encourage the development of the local road network between Crowson Lane and Greenbank Road.

Considering the benefit of the service road to the local area and wider road network, it is considered that the service road will serve a trunk purpose, and therefore its construction cost should be fully creditable.

6.0 SUMMARY OF CONCLUSIONS & RECOMMENDATIONS

- The subject site is located within the Greater Flagstone Priority Development Area (GFPDA), and is part of the nominated North Maclean Industry and Business Zone. The site is located to the southwest of the Mount Lindesay Highway / Crowson Lane interchange roundabout, and has an area of approximately 118 hectares.
- The proposed plan of development comprises of a four lot industrial subdivision, with a total developable area of approximately 111 hectares. It is proposed that access be gained via the planned service road along the Mt Lindesay Highway frontage of the site, and a new intersection with Crowson Lane, opposite Greenhill Road. The intersection on Crowson Lane will be constructed as a priority controlled junction with dedicated left and right turn lanes. It is envisaged that traffic signals will be required when Crowson Lane is upgraded to a four lane profile.
- Crowson Lane is a two lane rural road providing through movement between the Mount Lindesay Highway and Greenbank Road, and also access to adjoining rural residential properties. Crowson Lane generally has a posted speed limit of 80km/hr, with a reduced speed limit of 60km/hr near the Mount Lindesay Highway interchange.
- Road network planning carried out by the Department of Transport and Main Roads as part of the *West Mount Lindesay Highway Development Corridor Major Road Network Study* indicates that Crowson Lane will be upgraded to a four lane sub-arterial road, and will function as a primary east west link between the Mount Lindesay Highway and Teviot Road.
- Traffic analysis for projected volumes (assuming 4% pa growth) at the year 2030 indicate that the Mt Lindesay Highway / Crowson Lane intersection will function satisfactorily with the proposed development. Traffic modelling indicates that the proposed interim (priority controlled) intersection on Crowson Lane will operate satisfactorily for a considerable period of time. The need for traffic signals will primarily depend on population growth in the area and resultant background traffic growth on Crowson Lane.
- Considering the benefit of the service road to the local area and wider road network, it is considered that the service road will serve a trunk purpose, and therefore its construction cost should be fully creditable (refer to Section 5).

APPENDICES

APPENDIX A – PERFORMANCE CRITERIA (INTERSECTION MODELLING) APPENDIX B – SIDRA MODELLING (INTERIM INTERSECTION ON CROWSON LANE) APPENDIX C – SIDRA MODELLING (ULTIMATE INTERSECTION ON CROWSON LANE) APPENDIX D – SIDRA MODELLING (CROWSON LANE / HIGHWAY SERVICE ROAD)

APPENDIX A – PERFORMANCE CRITERIA (INTERSECTION PERFORMANCE)

1.	Level of Service (LOS)	
LOS	Traffic Signals and Roundabouts	Give Way and Stop Signs
'A'		Good operation.
'B'	Good operation.	Acceptable delays and spare capacity.
'C' 'D' 'E'	Good with acceptable delays and spare capacity. Satisfactory. Operating near capacity. At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode.	Satisfactory but accident study required. Near capacity and accident study required. At capacity and requires other control mode.
'F'	Unsatisfactory and requires additional capacity.	Unsatisfactory and requires other control mode.

2. Average Vehicle Delay (AVD)

The AVD provides a measure of the operational performance of an intersection as indicated on the table below which relates AVD to LOS. The AVD's listed in the table should be taken as a guide only as longer delays could be tolerated in some locations (i.e. inner city conditions) and on some roads (i.e. minor side street intersecting with a major arterial route).

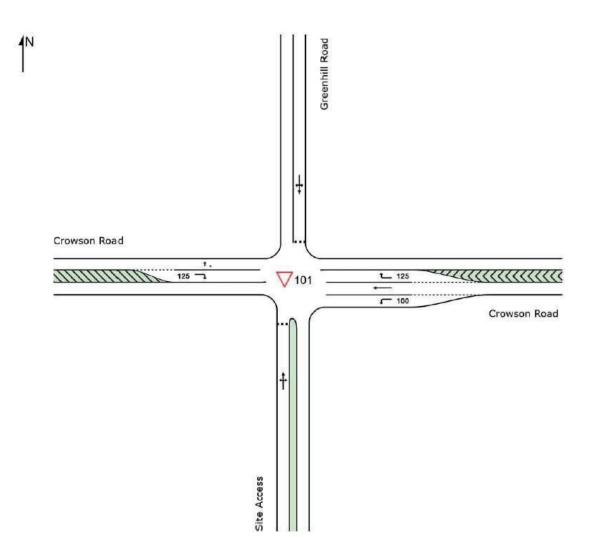
Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way and Stop Signs
A	less than 14	Good operation.	Good operation.
В	15 to 28	Good with acceptable delays and spare capacity.	Acceptable delays and spare capacity.
С	29 to 42	Satisfactory.	Satisfactory but accident study required.
D	43 to 56	Operating near capacity.	Near capacity and accident study required.
	57 to 70	At capacity; at signals incidents will cause excessive delays.	At capacity and requires other control mode.
E		Roundabouts require other control mode.	

3. Degree of Saturation (DS)

The DS is another measure of the operational performance of individual intersections.

For intersections controlled by **traffic signals**¹ both queue length and delay increase rapidly as DS approaches 1, and it is usual to attempt to keep DS to less than 0.9. Values of DS in the order of 0.7 generally represent satisfactory intersection operation. When DS exceeds 0.9 queues can be anticipated. For intersections controlled by a **roundabout or GIVE WAY or STOP signs**, satisfactory intersection operation is indicated by a DS of 0.8 or less.

¹The values of DS for intersections under traffic signal control are only valid for cycle length of 120 secs.



APPENDIX B – SIDRA MODELLING (INTERIM INTERSECTION ON CROWSON LANE)

SITE LAYOUT

Site: 101 [2020 AM Peak - With Development (Interim) - STAGES 1 & 2 ONLY]

16378 - Crowson Road / Greenhill Road Intersection (Interim) Site Category: (None) Giveway / Yield (Two-Way)

Site: 101 [2020 AM Peak - With Development (Interim) - STAGES 1 & 2 ONLY]

16378 - Crowson Road / Greenhill Road Intersection (Interim) Site Category: (None) Giveway / Yield (Two-Way)

Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Site Ac		70	v/C	Sec		ven					KIII/I
1	L2	22	5.0	0.088	5.7	LOSA	0.3	2.2	0.19	0.58	0.19	52.3
2	T1	1	5.0	0.088	6.3	LOSA	0.3	2.2	0.19	0.58	0.19	52.8
3	R2	50	5.0	0.088	7.6	LOSA	0.3	2.2	0.19	0.58	0.19	52.4
Appro	bach	73	5.0	0.088	7.0	LOSA	0.3	2.2	0.19	0.58	0.19	52.4
East	Crowson	Road										
4	L2	185	5.0	0.103	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.4
5	T1	46	10.0	0.025	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	20	5.0	0.009	5.6	LOSA	0.0	0.4	0.15	0.55	0.15	52.5
Approach		251	5.9	0.103	4.6	NA	0.0	0.4	0.01	0.47	0.01	54.4
North	: Greenh	ill Road										
7	L2	20	5.0	0.041	5.7	LOSA	0.1	1.0	0.12	0.56	0.12	52.9
8	T1	1	5.0	0.041	6.8	LOSA	0.1	1.0	0.12	0.56	0.12	53.4
9	R2	20	5.0	0.041	6.8	LOSA	0.1	1.0	0.12	0.56	0.12	52.6
Appro	bach	41	5.0	0.041	6.3	LOSA	0.1	1.0	0.12	0.56	0.12	52.8
West	Crowso	n Road										
10	L2	20	5.0	0.031	5.6	LOSA	0.0	0.0	0.00	0.21	0.00	56.3
11	T1	36	10.0	0.031	0.0	LOSA	0.0	0.0	0.00	0.21	0.00	58.0
12	R2	65	5.0	0.046	6.3	LOSA	0.2	1.5	0.34	0.58	0.34	52.0
Appro	bach	121	6.5	0.046	4.3	NA	0.2	1.5	0.18	0.41	0.18	54.4
	hicles	486	5.8	0.103	5.0	NA	0.3	2.2	0.09	0.48	0.09	53.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

Site: 101 [2020 PM Peak - With Development (Interim) - STAGES 1 & 2 ONLY]

16378 - Crowson Road / Greenhill Road Intersection (Interim) Site Category: (None) Giveway / Yield (Two-Way)

Mov	Turn	Demand Flows		Deg.	Average	Level of	95% Back of Queue		Prop.	Effective		
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate	Cycles	Speed km/h
South	: Site Ac		70	V/C	Sec		Ven	m	_			KITI/T
1	L2	44	5.0	0.165	5.8	LOSA	0.6	4.3	0.19	0.58	0.19	52.5
2	T1	1	5.0	0.165	6.1	LOSA	0.6	4.3	0.19	0.58	0.19	53.0
3	R2	99	5.0	0.165	7.3	LOSA	0.6	4.3	0.19	0.58	0.19	52.5
Appro	bach	144	5.0	0.165	6.8	LOSA	0.6	4.3	0.19	0.58	0.19	52.5
East:	Crowson	Road										
4	L2	105	5.0	0.059	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.4
5	T1	44	10.0	0.024	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	20	5.0	0.009	5.7	LOSA	0.0	0.4	0.18	0.54	0.18	52.4
Approach		169	6.3	0.059	4.2	NA	0.0	0.4	0.02	0.42	0.02	54.8
North	Greenh	ill Road										
7	L2	20	5.0	0.041	5.8	LOSA	0.1	1.0	0.16	0.56	0.16	52.8
8	T1	1	5.0	0.041	6.2	LOSA	0.1	1.0	0.16	0.56	0.16	53.3
9	R2	20	5.0	0.041	6.9	LOSA	0.1	1.0	0.16	0.56	0.16	52.6
Appro	bach	41	5.0	0.041	6.3	LOSA	0.1	1.0	0.16	0.56	0.16	52.7
West	Crowso	n Road										
10	L2	20	5.0	0.041	5.6	LOSA	0.0	0.0	0.00	0.16	0.00	56.7
11	T1	55	10.0	0.041	0.0	LOSA	0.0	0.0	0.00	0.16	0.00	58.5
12	R2	37	5.0	0.024	6.0	LOSA	0.1	0.8	0.26	0.56	0.26	52.2
Approach		112	7.5	0.041	3.0	NA	0.1	0.8	0.09	0.29	0.09	56.0
All Ve	hicles	466	6.1	0.165	4.9	NA	0.6	4.3	0.10	0.45	0.10	54.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [2030 AM Peak - With Development (Interim) - STAGES 1 & 2 ONLY]

16378 - Crowson Road / Greenhill Road Intersection (Interim) Site Category: (None) Giveway / Yield (Two-Way)

Mov	Turn	Demand Flows		Deg.	Average	Level of	95% Back of Queue		Prop.	Effective	Aver. No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh		Queued	Stop Rate	Cycles	Speed km/h
South	: Site Ac	cess		20072			2000					0.00000000
1	L2	22	5.0	0.093	5.8	LOSA	0.3	2.3	0.24	0.60	0.24	52.1
2	T1	1	5.0	0.093	6.6	LOSA	0.3	2.3	0.24	0.60	0.24	52.6
3	R2	50	5.0	0.093	7.9	LOSA	0.3	2.3	0.24	0.60	0.24	52.2
Appro	ach	73	5.0	0.093	7.3	LOSA	0.3	2.3	0.24	0.60	0.24	52.2
East:	Crowsor	Road										
4	L2	185	5.0	0.103	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.4
5	T1	68	10.0	0.037	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	20	5.0	0.009	5.7	LOSA	0.0	0.4	0.18	0.54	0.18	52.4
Approach		273	6.2	0.103	4.2	NA	0.0	0.4	0.01	0.43	0.01	54.8
North	Greenh	ill Road										
7	L2	20	5.0	0.042	5.8	LOSA	0.1	1.0	0.16	0.57	0.16	52.7
8	T1	1	5.0	0.042	7.2	LOSA	0.1	1.0	0.16	0.57	0.16	53.2
9	R2	20	5.0	0.042	7.1	LOSA	0.1	1.0	0.16	0.57	0.16	52.5
Appro	ach	41	5.0	0.042	6.5	LOSA	0.1	1.0	0.16	0.57	0.16	52.6
West:	Crowso	n Road										
10	L2	20	5.0	0.041	5.6	LOSA	0.0	0.0	0.00	0.16	0.00	56.7
11	T1	54	10.0	0.041	0.0	LOSA	0.0	0.0	0.00	0.16	0.00	58.5
12	R2	65	5.0	0.047	6.4	LOSA	0.2	1.5	0.35	0.59	0.35	51.9
Approach		139	6.9	0.047	3.8	NA	0.2	1. <mark>5</mark>	0.17	0.36	0.17	55.0
All Ve	hicles	526	6.2	0.103	4.7	NA	0.3	2.3	0,10	0.45	0.10	54.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [2030 PM Peak - With Development (Interim) - STAGES 1 & 2 ONLY]

16378 - Crowson Road / Greenhill Road Intersection (Interim) Site Category: (None) Giveway / Yield (Two-Way)

Mov	Turn	Demand		Deg. Satn v/c	Average Delay sec	Level of Service		of Queue	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
ID		Total veh/h					Vehicles veh	Distance m				
South	: Site Ac											
1	L2	44	5.0	0.174	5.8	LOSA	0.6	4.6	0.25	0.60	0.25	52.2
2	T1	1	5.0	0.174	6.5	LOSA	0.6	4.6	0.25	0.60	0.25	52.7
3	R2	99	5.0	0.174	7.8	LOSA	0.6	4.6	0.25	0.60	0.25	52.3
Appro	bach	144	5.0	0.174	7.2	LOSA	0.6	4.6	0.25	0.60	0.25	52.3
East:	Crowson	Road										
4	L2	105	5.0	0.059	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.4
5	T1	66	10.0	0.036	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	20	5.0	0.009	5.7	LOSA	0.0	0.4	0.21	0.54	0.21	52.3
Approach		191	6.7	0.059	3.7	NA	0.0	0.4	0.02	0.37	0.02	55.4
North	Greenh	ill Road										
7	L2	20	5.0	0.043	5.9	LOSA	0.1	1.1	0.21	0.57	0.21	52.7
8	T1	1	5.0	0.043	6.5	LOSA	0.1	1.1	0.21	0.57	0.21	53.2
9	R2	20	5.0	0.043	7.3	LOSA	0.1	1.1	0.21	0.57	0.21	52.4
Appro	bach	41	5.0	0.043	6.6	LOSA	0.1	1.1	0.21	0.57	0.21	52.6
West	Crowso	n Road										
10	L2	20	5.0	0.056	5.6	LOSA	0.0	0.0	0.00	0.12	0.00	57.1
11	T1	81	10.0	0.056	0.0	LOSA	0.0	0.0	0.00	0.12	0.00	58.9
12	R2	37	5.0	0.025	6.0	LOSA	0.1	0.8	0.28	0.56	0.28	52.1
Approach		138	7.9	0.056	2.4	NA	0.1	0.8	0.08	0.24	0.08	56.7
All Ve	hicles	514	6.4	0.174	4.6	NA	0.6	4.6	0.11	0.42	0.11	54.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [2030 AM Peak - With Development (Interim) - FULL DEVELOPMENT]

16378 - Crowson Road / Greenhill Road Intersection (Interim) Site Category: (None) Giveway / Yield (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: Site Ac	veh/h	%	v/c	Sec	_	veh	m	_	_	_	km/h
1	L2	49	5.0	0.253	5.8	LOSA	0.9	6.7	0.30	0.65	0.30	50.8
2	T1	1	5.0	0.253	8.7	LOSA	0.9	6.7	0.30	0.65		51.3
3	R2	110	5.0	0.253	10.5	LOS B	0.9	6.7	0.30	0.65		50.9
Appro	1.5.07875	160	5.0	0.253	9.1	LOSA	0.9	6.7	0.30	0.65		50.9
			5.0	0.200	3.1	LOOA	0.0	0.7	0.50	0.00	0.00	50.5
East	Crowsor	Road										
4	L2	409	5.0	0.228	5.6	LOSA	0.0	0.0	0.00	0.57	0.00	53.4
5	T1	68	10.0	0.037	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	20	5.0	0.009	5.7	LOSA	0.0	0.4	0.18	0.54	0.18	52.4
Appro	ach	497	5.7	0.228	4.9	NA	0.0	0.4	0.01	0.49	0.01	54.2
North	Greenh	ill Road										
7	L2	20	5.0	0.047	5.8	LOSA	0.2	1.2	0.16	0.58	0.16	52.4
8	T1	1	5.0	0.047	10.4	LOS B	0.2	1.2	0.16	0.58	0.16	52.8
9	R2	20	5.0	0.047	8.0	LOSA	0.2	1.2	0.16	0.58	0.16	52.1
Appro	ach	41	5.0	0.047	7.0	LOSA	0.2	1.2	0.16	0.58	0.16	52.3
West	Crowso	n Road										
10	L2	20	5.0	0.041	5.6	LOSA	0.0	0.0	0.00	0.16	0.00	56.7
11	T1	54	10.0	0.041	0.0	LOSA	0.0	0.0	0.00	0.16	0.00	58.5
12	R2	144	5.0	0.134	7.6	LOSA	0.6	4.3	0.52	0.71	0.52	51.4
Appro	ach	218	6.2	0.134	5.5	NA	0.6	4.3	0.34	0.52	0.34	53.4
All Ve	hicles	916	5.7	0.253	5.8	NA	0.9	6.7	0.14	0.53	0.14	53.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [2030 PM Peak - With Development (Interim) - FULL DEVELOPMENT]

16378 - Crowson Road / Greenhill Road Intersection (Interim) Site Category: (None) Giveway / Yield (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total veh/h	HV %	Satn v/c	Delay	Service	Vehicles veh	Distance	Queued	Stop Rate	Cycles	Speed
South	: Site Ac		70	V/C	Sec		ven	m	_	_		km/h
1	L2	98	5.0	0.434	6.6	LOSA	2.4	17.7	0.32	0.69	0.40	50.7
2	T1	1	5.0	0.434	8.8	LOSA	2.4	17.7	0.32	0.69	0.40	51.2
3	R2	220	5.0	0.434	10.4	LOS B	2.4	17.7	0.32	0.69	0.40	50.8
Appro	ach	319	5.0	0.434	9.3	LOSA	2.4	17.7	0.32	0.69	0.40	50.7
East:	Crowson	Road										
4	L2	234	5.0	0.130	5.6	LOSA	0.0	0.0	0.00	0.57	0.00	53.4
5	T1	66	10.0	0.036	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
6	R2	20	5.0	0.009	5.7	LOSA	0.0	0.4	0.21	0.54	0.21	52.3
Appro	ach	320	6.0	0.130	4.5	NA	0.0	0.4	0.01	0.45	0.01	54.6
North	Greenh	ill Road										
7	L2	20	5.0	0.047	5.9	LOSA	0.2	1.2	0.22	0.58	0.22	52.3
8	T1	1	5.0	0.047	7.9	LOSA	0.2	1.2	0.22	0.58	0.22	52.8
9	R2	20	5.0	0.047	8.1	LOSA	0.2	1.2	0.22	0.58	0.22	52.1
Appro	ach	41	5.0	0.047	7.0	LOSA	0.2	1.2	0.22	0.58	0.22	52.2
West:	Crowso	n Road										
10	L2	20	5.0	0.056	5.6	LOSA	0.0	0.0	0.00	0.12	0.00	57.1
11	T1	81	10.0	0.056	0.0	LOSA	0.0	0.0	0.00	0.12	0.00	58.9
12	R2	82	5.0	0.062	6.6	LOSA	0.3	2.0	0.39	0.61	0.39	51.8
Appro	ach	183	7.2	0.062	3.6	NA	0.3	2.0	0.18	0.34	0.18	55.3
All Ve	hicles	863	5.9	0.434	6.2	NA	2.4	17.7	0.17	0.52	0.20	53.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

Site: 101 [ULTIMATE Peak - With Development (Interim) - STAGE 1 ONLY (ULTIMATE BACKGROUND 30k vpd)]

16378 - Crowson Road / Greenhill Road Intersection (Interim) Site Category: (None) Giveway / Yield (Two-Way)

Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
South	: Site Ac				000							
1	L2	10	5.0	5.289	7927.5	LOS F	43.5	317.2	1.00	1.77	4.98	0.4
2	T1	1	5.0	5.289	8371.7	LOS F	43.5	317.2	1.00	1.77	4.98	0.4
3	R2	22	5.0	5.289	7968.1	LOS F	43.5	317.2	1.00	1.77	4.98	0.4
Appro	bach	33	5.0	5.289	7968.0	LOS F	43.5	317.2	1.00	1.77	4.98	0.4
East:	Crowsor	Road										
4	L2	80	5.0	0.045	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.4
5	T1	1650	10.0	0.901	0.8	LOSA	0.0	0.0	0.00	0.00	0.00	58.5
6	R2	20	5.0	0.095	23.6	LOS C	0.3	2.3	0.92	0.97	0.92	41.9
Appro	bach	1750	9.7	0.901	1.3	NA	0.3	2.3	0.01	0.04	0.01	58.0
North	: Greenh	ill Road										
7	L2	20	5.0	4.505	6455.2	LOS F	48.3	352.9	1.00	2.16	6.59	0.5
8	T1	1	5.0	4.505	7017.8	LOS F	48.3	352.9	1.00	2.16	6.59	0.5
9	R2	20	5.0	4.505	6540.0	LOS F	48.3	352.9	1.00	2.16	6.59	0.5
Appro	bach	41	5.0	4.505	6510.3	LOS F	48.3	352.9	1.00	2.16	6.59	0.5
West	Crowso	n Road										
10	L2	20	5.0	0.748	5.8	LOSA	0.0	0.0	0.00	0.01	0.00	57.6
11	T1	1350	10.0	0.748	0.3	LOSA	0.0	0.0	0.00	0.01	0.00	59.4
12	R2	28	5.0	0.887	336.1	LOS F	3.1	22.5	1.00	1.14	1.66	9.1
Appro	bach	1398	9.8	0.887	7.1	NA	3.1	22.5	0.02	0.03	0.03	53.5
All Ve	hicles	3222	9.7	5.289	168.2	NA	48.3	352.9	0.04	0.08	0,16	15.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

Site: 101 [ULTIMATE Peak - With Development (Interim) - STAGES 1 ONLY (ULTIMATE BACKGROUND 30k vpd)]

16378 - Crowson Road / Greenhill Road Intersection (Interim) Site Category: (None) Giveway / Yield (Two-Way)

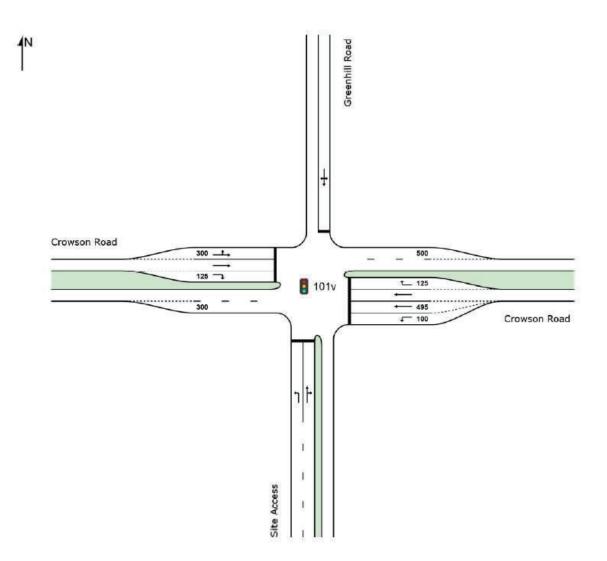
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Site Ac											
1	L2	19	5.0	8.330	13306.8	LOS F	84.6	617.6	1.00	2.06	6.33	0.3
2	T1	1	5.0	8.330	13609.5	LOS F	84.6	617.6	1.00	2.06	6.33	0.3
3	R2	43	5.0	8.330	13352.4	LOS F	84.6	617.6	1.00	2.06	6.33	0.3
Appro	bach	63	5.0	8.330	13342.7	LOS F	84.6	617.6	1.00	2.06	6.33	0.3
East:	Crowson	Road										
4	L2	46	5.0	0.026	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.4
5	T1	1350	10.0	0.737	0.2	LOSA	0.0	0.0	0.00	0.00	0.00	59.5
6	R2	20	5.0	0.565	182.4	LOS F	1.6	11.8	0.99	1.03	1.14	14.8
Appro	bach	1416	9.8	0.737	3.0	NA	1.6	11.8	0.01	0.03	0.02	56.9
North	Greenh	ill Road										
7	L2	20	5.0	5.579	8425.8	LOS F	52.9	386.1	1.00	1.91	5.61	0.4
8	T1	1	5.0	5.579	8848.4	LOS F	52.9	386.1	1.00	1.91	5.61	0.4
9	R2	20	5.0	5.579	8464.6	LOS F	52.9	386.1	1.00	1.91	5.61	0.4
Appro	bach	41	5.0	5.579	8455.0	LOS F	52.9	386.1	1.00	1.91	5.61	0.4
West:	Crowso	n Road										
10	L2	20	5.0	0.912	6.3	LOSA	0.0	0.0	0.00	0.01	0.00	56.6
11	T1	1650	10.0	0.912	0.9	LOSA	0.0	0.0	0.00	0.01	0.00	58.2
12	R2	16	5.0	0.112	30.6	LOS D	0.3	2.4	0.93	0.97	0.93	38.7
Appro	ach	1686	9.9	0.912	1.2	NA	0.3	2.4	0.01	0.02	0.01	57.9
All Ve	hicles	3206	9.7	8.330	372.3	NA	84.6	617.6	0.04	0.09	0.21	8.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.


Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

APPENDIX C – SIDRA MODELLING (ULTIMATE INTERSECTION ON CROWSON LANE)

SITE LAYOUT Site: 101v [ULTIMATE Peak - With Development (Signals) - (ULTIMATE BACKGROUND 30k vpd)]

16378 - Crowson Road / Greenhill Road Intersection (Signals) Site Category: (None) Signals - Fixed Time Isolated

Site: 101v [ULTIMATE Peak - With Development (Signals) - (ULTIMATE BACKGROUND 30k vpd)]

16378 - Crowson Road / Greenhill Road Intersection (Signals)

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 110 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
South	: Site Ac	Cess										100
1	L2	49	5.0	0.120	42.0	LOS D	2.1	15.3	0.83	0.73	0.83	34.9
2	T1	1	5.0	0.851	63.7	LOS E	6.7	49.0	1.00	0.97	1.44	28.2
3	R2	110	5.0	0.851	69.3	LOS E	6.7	49.0	1.00	0.97	1.44	27.8
Appro	bach	160	5.0	0.851	60.9	LOS E	6.7	49.0	0.95	0.89	1.25	29.7
East:	Crowsor	Road										
4	L2	409	5.0	0.411	20.6	LOSC	12.5	91.3	0.62	0.77	0.62	43.8
5	T1	1650	10.0	0.891	33.6	LOSC	49.4	375.4	0.89	0.93	1.03	38.6
6	R2	20	5.0	0.204	62.6	LOS E	1.1	8.0	0.99	0.70	0.99	29.0
Appro	bach	2079	9.0	0.891	31.4	LOSC	49.4	375.4	0.84	0.90	0.95	39.4
North	Greenh	ill Road										
7	L2	20	5.0	0.419	63.9	LOSE	2.3	16.7	1.00	0.73	1.00	28.9
8	T1.	1	5.0	0.419	58.3	LOS E	2.3	16.7	1.00	0.73	1.00	29.3
9	R2	20	5.0	0.419	63.9	LOS E	2.3	16.7	1.00	0.73	1.00	28.9
Appro	bach	41	5.0	0.419	63.8	LOS E	2.3	16.7	1.00	0.73	1.00	28.9
West	Crowso	n Road										
10	L2	20	5.0	0.624	20.5	LOSC	23.2	176.1	0.69	0.63	0.69	46.8
11	T1	1350	10.0	0.624	14.9	LOS B	23.2	176.4	0.69	0.63	0.69	48.1
12	R2	145	5.0	0.809	64.6	LOS E	8.4	61.7	1.00	0.91	1.27	28.7
Appro	bach	1515	9.5	0.809	19.8	LOS B	23.2	176.4	0.72	0.66	0.75	45.2
	hicles	3795	9.0	0.891	28.3	LOSC	49.4	375.4	0.80	0.80	0.88	40.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

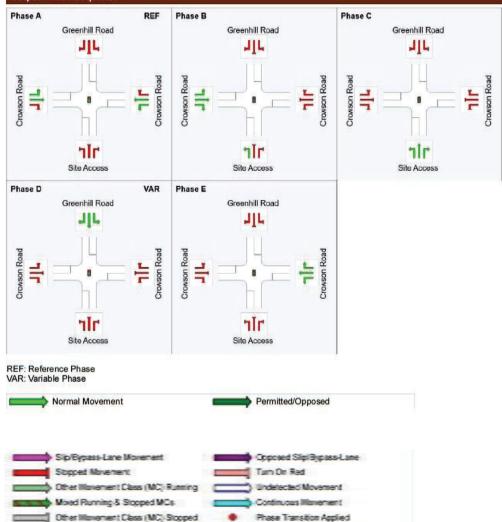
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

PHASING SUMMARY

Site: 101v [ULTIMATE Peak - With Development (Signals) - (ULTIMATE BACKGROUND 30k vpd)]

16378 - Crowson Road / Greenhill Road Intersection (Signals) Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 110 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence.


Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase A Input Phase Sequence: A, B, C, D*, E Output Phase Sequence: A, B, C, D*, E (* Variable Phase)

Phase Timing Summary

Phase	A	B	C	D	E
Phase Change Time (sec)	0	55	72	86	98
Green Time (sec)	49	11	8	6	6
Phase Time (sec)	55	17	14	12	12
Phase Split	50%	15%	13%	11%	11%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Site: 101v [ULTIMATE Peak - With Development (Signals) - (ULTIMATE BACKGROUND 30k vpd)]

16378 - Crowson Road / Greenhill Road Intersection (Signals)

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Site Ac											
1	L2	100	5.0	0.207	45.0	LOS D	4.9	35.7	0.81	0.76	0.81	33.9
2	T1	1	5.0	0.873	67.9	LOS E	18.7	136.3	1.00	0.97	1.28	27.3
3	R2	264	5.0	0.873	73.5	LOS E	18.7	136.3	1.00	0.97	1.28	27.0
Appro	bach	365	5.0	0.873	65.7	LOS E	18.7	136.3	0.95	0.91	1.15	28.6
East:	Crowson	Road										
4	L2	233	5.0	0.238	21.8	LOS C	7.6	55.2	0.56	0.73	0.56	43.2
5	T1	1650	10.0	0.886	35.3	LOS D	53.7	407.8	0.90	0.90	0.99	37.9
6	R2	20	5.0	0.242	74.2	LOS E	1.3	9.5	1.00	0.70	1.00	26.6
Appro	bach	1903	9.3	0.886	34.1	LOS C	53.7	407.8	0.86	0.88	0.94	38.3
North	: Greenh	ill Road										
7	L2	20	5.0	0.495	75.7	LOS E	2.7	19.9	1.00	0.73	1.00	26.4
8	T1	1	5.0	0.495	70.1	LOS E	2.7	19.9	1.00	0.73	1.00	26.8
9	R2	20	5.0	0.495	75.7	LOS E	2.7	19.9	1.00	0.73	1.00	26.4
Appro	bach	41	5.0	0.495	75.6	LOS E	2.7	19.9	1.00	0.73	1.00	26.4
West	Crowso	n Road										
10	L2	20	5.0	0.697	27.9	LOS C	32.1	243.7	0.79	0.72	0.79	42.8
11	T1	1350	10.0	0.697	21.9	LOS C	32.1	243.7	0.77	0.71	0.77	44.0
12	R2	83	5.0	0.860	82.1	LOS F	5.9	43.2	1.00	0.95	1.47	25.2
Appro	bach	1453	9.6	0.860	25.4	LOS C	32.1	243.7	0.79	0.72	0.81	42.2
All Ve	hicles	3762	9.0	0.886	34.3	LOS C	53.7	407.8	0.84	0.82	0.91	38.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

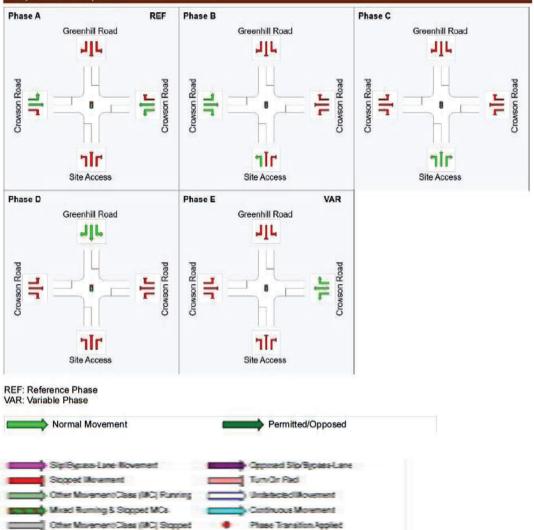
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

PHASING SUMMARY

Site: 101v [ULTIMATE Peak - With Development (Signals) - (ULTIMATE BACKGROUND 30k vpd)]

16378 - Crowson Road / Greenhill Road Intersection (Signals) Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 130 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence.

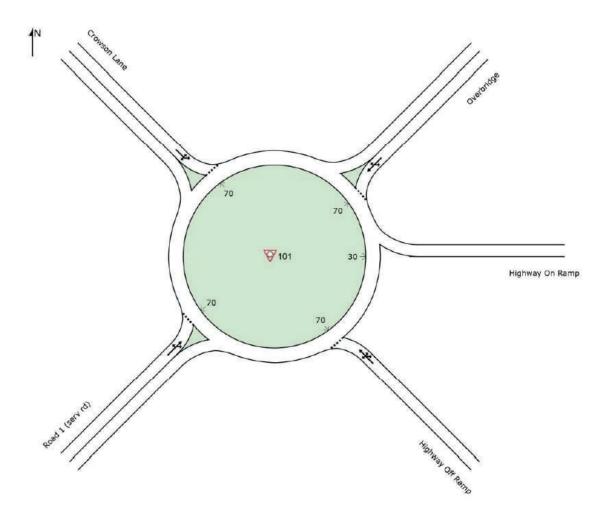

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Phase Sequence: Opposed Turns Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E* Output Phase Sequence: A, B, C, D, E* (* Variable Phase)

Phase Timing Summary

Phase	A	В	C	D	E
Phase Change Time (sec)	0	65	78	106	118
Green Time (sec)	59	7	22	6	6
Phase Time (sec)	65	13	28	12	12
Phase Split	50%	10%	22%	9%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



APPENDIX D – SIDRA MODELLING (CROWSON LANE / HIGHWAY SERVICE ROAD)

SITE LAYOUT

Site: 101 [2030 AM Peak - without development 4% p.a. growth]

16375 - Crowson Lane / Site Access Intersection Site Category: (None) Roundabout

Site: 101 [2030 AM Peak - without development 4% p.a. growth]

16375 - Crowson Lane / Site Access Intersection Site Category: (None) Roundabout

Mov	Tum	Demand		Deg.	Average	Level of	95% Back		Prop.		Aver. No.	
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
South	East Hi	ghway Off I	Ramp				- the same					
4	L2	1	20.0	0.076	2.3	LOSA	0.4	2.8	0.15	0.53	0.15	53.8
5	T1	21	10.0	0.076	2.7	LOSA	0.4	2.8	0.15	0.53	0.15	56.7
6	R2	99	10.0	0.076	9.9	LOSA	0.4	2.8	0.15	0.53	0.15	58.5
23b	R3	1	0.0	0.076	11.2	LOS B	0.4	2.8	0.15	0.53	0.15	60.3
Аррго	ach	122	10.0	0.076	8.6	LOSA	0.4	2.8	0.15	0.53	0.15	58.1
North	East: Ov	erbridge										
24b	L3	106	0.0	0.089	2.5	LOSA	0.5	3.3	0.11	0.43	0.11	55.8
8	T1	1	20.0	0.089	2.4	LOSA	0.5	3.3	0.11	0.43	0.11	59.2
9	R2	47	10.0	0.089	9.8	LOSA	0.5	3.3	0.11	0.43	0.11	61.1
Appro	ach	154	3.2	0.089	4.7	LOSA	0.5	3.3	0.11	0.43	0.11	57.4
North	West: Cr	owson Lan	е									
10	L2	29	10.0	0.035	2.4	LOSA	0.2	1.2	0.23	0.28	0.23	58.0
27a	L1	24	0.0	0.035	2.5	LOSA	0.2	1.2	0.23	0.28	0.23	60.3
12	R2	1	20.0	0.035	10.2	LOS B	0.2	1.2	0.23	0.28	0.23	62.1
Appro	ach	54	5.7	0.035	2.6	LOSA	0.2	1.2	0.23	0.28	0.23	59.1
South	West: R	oad 1 (serv	rd)									
1	L2	1	20.0	0.002	2.6	LOSA	0.0	0.1	0.29	0.38	0.29	55.9
2	T1	1	20.0	0.002	3.1	LOSA	0.0	0.1	0.29	0.38	0.29	59.1
32a	R1	1	0.0	0.002	8.7	LOSA	0.0	0.1	0.29	0.38	0.29	59.8
Appro	ach	3	13.3	0.002	4.8	LOSA	0.0	0.1	0.29	0.38	0.29	58.2
All Ve	hicles	333	6.2	0.089	5.8	LOSA	0.5	3.3	0.14	0.44	0.14	57.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

Site: 101 [2030 PM Peak - without development 4% p.a. growth]

16375 - Crowson Lane / Site Access Intersection Site Category: (None) Roundabout

Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
South	East Hi	ghway Off I	Ramp	10000			1.1100 King					
4	L2	1	20.0	0.092	2.3	LOSA	0.5	3.5	0.17	0.53	0.17	53.8
5	T1	28	10.0	0.092	2.7	LOSA	0.5	3.5	0.17	0.53	0.17	56.8
6	R2	118	10.0	0.092	9.9	LOSA	0.5	3.5	0.17	0.53	0.17	58.5
23b	R3	1	0.0	0.092	11.2	LOS B	0.5	3.5	0.17	0.53	0.17	60.3
Appro	ach	148	10.0	0.092	8.5	LOSA	0.5	3.5	0.17	0.53	0.17	58.1
North	East: Ov	erbridge										
24b	L3	125	0.0	0.104	2.5	LOSA	0.6	4.0	0.12	0.43	0.12	55.8
8	T1	1	20.0	0.104	2.4	LOSA	0.6	4.0	0.12	0.43	0.12	59.2
9	R2	54	10.0	0.104	9.8	LOSA	0.6	4.0	0.12	0.43	0.12	61.1
Appro	ach	180	3.1	0.104	4.7	LOSA	0.6	4.0	0.12	0.43	0.12	57.3
North	West: Ci	rowson Lan	е									
10	L2	36	10.0	0.043	2.5	LOSA	0.2	1.5	0.25	0.29	0.25	57.9
27a	L1	29	0.0	0.043	2.5	LOSA	0.2	1.5	0.25	0.29	0.25	60.1
12	R2	1	20.0	0.043	10.2	LOS B	0.2	1.5	0.25	0.29	0.25	62.0
Appro	ach	66	5.8	0.043	2.6	LOSA	0.2	1.5	0.25	0.29	0.25	58.9
South	West: R	oad 1 (serv	rd)									
1	L2	1	20.0	0.002	2.8	LOSA	0.0	0.1	0.32	0.38	0.32	55.7
2	T1	1	20.0	0.002	3.2	LOSA	0.0	0.1	0.32	0.38	0.32	59.0
32a	R1	1	0.0	0.002	8.8	LOSA	0.0	0.1	0.32	0.38	0.32	59.6
Appro	ach	3	13.3	0.002	4.9	LOSA	0.0	0.1	0.32	0.38	0.32	58.0
	hicles	397	6.2	0.104	5.8	LOSA	0.6	4.0	0.16	0.44	0.16	57.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site: 101 [2030 AM Peak - without development 4% p.a. growth - FULL DEVELOPMENT (0.4 trips / 100msq)]

16375 - Crowson Lane / Site Access Intersection Site Category: (None) Roundabout

Mov	Tum	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.		Aver. No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
South	East Hi	ghway Off I	Ramp									300.00
4	L2	47	20.0	0.274	6.9	LOSA	2.2	17.1	0.89	0.78	0.89	52.2
5	T1	69	10.0	0.274	7.1	LOSA	2.2	17.1	0.89	0.78	0.89	55.0
6	R2	99	10.0	0.274	14.3	LOS B	2.2	17.1	0.89	0.78	0.89	56.7
23b	R3	1	0.0	0.274	15.4	LOS B	2.2	17.1	0.89	0.78	0.89	58.5
Appro	ach	216	12.1	0.274	10.4	LOS B	2.2	17.1	0.89	0.78	0.89	55.2
North	East: Ov	erbridge										
24b	L3	106	0.0	0.658	4.7	LOSA	6.8	52.8	0.72	0.63	0.75	52.5
8	T1	360	20.0	0.658	4.9	LOSA	6.8	52.8	0.72	0.63	0.75	55.4
9	R2	407	10.0	0.658	12.1	LOS B	6.8	52.8	0.72	0.63	0.75	57.0
Appro	ach	873	12.9	0.658	8.2	LOSA	6.8	52.8	0.72	0.63	0.75	55.7
North	West: Ci	rowson Lan	е									
10	L2	46	10.0	0.123	3.3	LOSA	0.7	5.4	0.49	0.37	0.49	56.3
27a	L1	117	0.0	0.123	3.3	LOSA	0.7	5.4	0.49	0.37	0.49	58.5
12	R2	1	20.0	0.123	11.2	LOS B	0.7	5.4	0.49	0.37	0.49	60.2
Appro	bach	164	2.9	0.123	3.4	LOSA	0.7	5.4	0.49	0.37	0.49	57.9
South	West R	oad 1 (serv	rd)									
1	L2	13	20.0	0.235	5.1	LOSA	1.7	12.2	0.71	0.67	0.71	52.6
2	T1	65	20.0	0.235	5.5	LOSA	1.7	12.2	0.71	0.67	0.71	55.5
32a	R1	175	0.0	0.235	10.8	LOS B	1.7	12.2	0.71	0.67	0.71	56.0
Appro	bach	253	6.2	0.235	9.2	LOSA	1.7	12.2	0.71	0.67	0.71	55.7
All Ve	hicles	1506	10.6	0.658	8.2	LOSA	6.8	52.8	0.72	0.63	0.74	55.9
							0.0			0.00		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

∀ Site: 101 [2030 PM Peak - without development 4% p.a. growth - FULL DEVELOPMENT (0.4 trips / 100msq)]

16375 - Crowson Lane / Site Access Intersection Site Category: (None) Roundabout

Mov	Tum	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
South	East Hi	ghway Off I	Ramp									
4	L2	27	20.0	0.180	4.3	LOSA	1.2	9.3	0.64	0.62	0.64	53.0
5	T1	55	10.0	0.180	4.6	LOSA	1.2	9.3	0.64	0.62	0.64	55.9
6	R2	118	10.0	0.180	11.8	LOS B	1.2	9.3	0.64	0.62	0.64	57.6
23b	R3	1	0.0	0.180	13.0	LOS B	1.2	9.3	0.64	0.62	0.64	59.4
Appro	ach	201	11.3	0.180	8.8	LOSA	1.2	9.3	0.64	0.62	0.64	56.5
North	East: Ov	erbridge										
24b	L3	125	0.0	0.463	4.1	LOSA	3.6	27.5	0.63	0.59	0.63	53.0
8	T1	206	20.0	0.463	4.3	LOSA	3.6	27.5	0.63	0.59	0.63	55.9
9	R2	260	10.0	0.463	11.5	LOS B	3.6	27.5	0.63	0.59	0.63	57.6
Appro	ach	591	11.4	0.463	7.4	LOSA	3.6	27.5	0.63	0.59	0.63	56.0
North	West: Cr	owson Lan	е									
10	L2	70	10.0	0.269	5.2	LOSA	2.0	14.4	0.75	0.56	0.75	54.8
27a	L1	215	0.0	0.269	5.1	LOSA	2.0	14.4	0.75	0.56	0.75	56.9
12	R2	1	20.0	0.269	13.1	LOS B	2.0	14.4	0.75	0.56	0.75	58.5
Appro	ach	286	2.5	0.269	5.1	LOSA	2.0	14.4	0.75	0.56	0.75	56.3
South	West R	oad 1 (serv	rd)									
1	L2	26	20.0	0.433	4.6	LOSA	3.2	25.3	0.68	0.56	0.68	54.1
2	T1	350	20.0	0.433	5.1	LOSA	3.2	25.3	0.68	0.56	0.68	57.1
32a	R1	130	0.0	0.433	10.4	LOS B	3.2	25.3	0.68	0.56	0.68	57.7
Appro	ach	506	14.9	0.433	6.4	LOSA	3.2	25.3	0.68	0.56	0.68	57.1
All Ve	hicles	1584	10.9	0.463	6.9	LOSA	3.6	27.5	0.67	0.58	0.67	56.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).