

20 July 2020

Our Ref: 17BRA0109 L01_1 Stage 2 RFI

Your Ref:

Attention: Chiara Towler

RPS Group

Dear Chiara,

PLANS AND DOCUMENTS referred to in the PDA DEVELOPMENT APPROVAL

Queensland

Approval no: DEV2020/1118

Date: 02 September 2020

RE: Response to EDQ Further Issues - Carseldine Urban Village Stage 2

In response to the Economic Development Queensland (EDQ) *Further Issues* dated 30 June 2020, we advise the following regarding item 5 and the Noise Impact Assessment.

This response makes reference to the TTM acoustic report (ref: 17BRA0109 R03_3) dated 20th July 2020 revised in response to the EDQ *Further Issues*.

EDQ Request:

DTMR is unable to fully assess the impacts of transport noise on the proposed development. The applicant is requested to revise the Noise Impact Assessment to address the following components:

All predicted noise levels shall be based on rail noise modelling without any buildings on the site.

TTM Response:

The application is for Stage 2 terrace dwellings. The revised acoustic report does not include future stage buildings (Stages 3 and 4) on the site.

EDQ Request:

Please provide rail noise predictions with and without noise barriers.

TTM Response:

The revised acoustic report includes assessment with and without noise barriers and demonstrates compliance with State Development Assessment Provision (SDAP) noise criteria for the proposed acoustic barrier.

EDQ Request:

Design noise barriers to comply with the relevant external noise criteria on all stages and lots.

The report shall specify the barrier heights and Reduce Levels (RL's) for the top edge of the required noise barriers at the corners of barriers, the end of noise barriers, any change in barrier height and at spacing no greater than 10m apart.

Barriers should have sufficient overlap, recommend an overlap of at least 4 times the width of the gap in the barriers

TTM Response:

The proposed acoustic barrier complies with the relevant SDAP noise criteria for all stages and all lots.

The acoustic report includes all barrier height details in Appendix A.

The noise modelling results show that the proposed acoustic barrier overlap is acceptable.

EDQ Request:

The report shall contain the Reduced Level (RL's) for the pad levels assumed in the noise modelling for all lots in all stages.

TTM Response:

The revised acoustic report includes building pad levels in Appendix C.

EDQ Request:

The proposed noise barriers shall be constructed in accordance with Queensland Rail Civil Engineering Technical Requirement Civil-SR-014.

TTM Response:

Standard condition.

We trust this information meets with your current requirements. Should you have any queries please do not hesitate to contact TTM.

Yours faithfully,

Steve Yorke Lead Consultant

TTM Consulting Pty Ltd

PLANS AND DOCUMENTS referred to in the PDA DEVELOPMENT APPROVAL

Approval no: DEV2020/1118

Date: 02 September 2020

Acoustic Assessment Report

Carseldine Urban Village – Stage 2

532 Beams Road, Carseldine

Economic Development Queensland

17BRA0109 R03_3 - Stage 2

About TTM

For 30 years, we've been at the centre of the Australian development and infrastructure industry. Our unique combination of acoustics, data, traffic and waste services is fundamental to the success of any architectural or development project.

We have over 50 staff, with an unrivalled depth of experience. Our industry knowledge, technical expertise and commercial insight allow us to deliver an exceptional and reliable service.

T: (07) 3327 9500 F: (07) 3327 9501

E: ttmbris@ttmgroup.com.au

DATA TRA

WASTE

Revision Record

No.	Author	Reviewed/Approved	Description	Date
А	S Yorke	J Fox	Internal draft	01/04/2020
0	S Yorke		Client issue	01/04/2020
1	S Yorke		Plans update	12/05/2020
2	S Yorke		RFI response	16/07/2020
3	S Yorke		RFI response	20/07/2020

Contents

1	Executiv	xecutive Summary5				
2	Introdu	ction		6		
	2.1	Backg	round	6		
	2.2	References				
	2.3	Scope	2	6		
3	Site Des	cription	າ	7		
	3.1	Site Lo	ocation	7		
	3.2	Curre	nt Site Conditions	7		
4	The Pro	posed [Development	8		
	4.1	Devel	opment Description	8		
5	Measur	ements		9		
	5.1	Equip	ment	9		
	5.2	Unatt	ended Noise Monitoring	9		
	5.3	Result	ts of Measurements	10		
		5.3.1	Road Traffic Noise Levels	10		
		5.3.2	Rail Noise Measurements	10		
6	Noise C	riteria		12		
	6.1	Road	Traffic Noise	12		
		6.1.1	Queensland Development Code MP4.4 – Road Traffic Noise	12		
	6.2	Rail N	oise	12		
		6.2.1	Fitzgibbon Interim Land Use Plan	12		
		6.2.2	State Development Assessment Provisions (SDAP)	13		
		6.2.3	Queensland Development Code MP4.4 - Rail	14		
7	Analysis	– Road	Traffic Noise	15		
	7.1	Traffic	C Volumes	15		
	7.2	Noise	Model	15		
		7.2.1	Noise Modelling Parameters	15		
		7.2.2	Noise Model Verification	16		
	7.3	Predic	cted Noise Levels	16		
8	Rail Noi	se Asse	ssment	19		

	8.1	Rail Vo	lumes	19
	8.2	Noise I	Model	19
		8.2.1	Noise Modelling Parameters	19
		8.2.2	Noise Model Verification	20
	8.3	Predict	ted Noise Levels - L _{Amax}	20
9	Recomm	endatio	ons	24
	9.1	Acoust	ic Barrier	24
	9.2	Built Fo	orm Treatments	25
		9.2.1	Road Traffic and Rail Noise	25
10	Conclusi	on		28
App	endix A		pment Plans	
• •	endix B		ended Noise Monitoring Graphs	
• •	endix C		PLAN Noise Modelling	
• •	endix D		1P4.4 Schedules 1 and 2	
, , , ,	onaix b	ασσ		
Tal	ole Ind	ex		
Tabl	e 1: Meas	sured R	oad Traffic Noise Levels	10
			ail Noise Levels (Highest 15)	
			Noise Category Levels – QDC MP4.4 (Schedule 3)	
			Criteria - Rail Noise	
			ntegory Levels – QDC MP4.4 (Schedule 3) nes used in the Noise Model	
			Noise Modelling Parameters	
			of Measured and Predicted Road Traffic Noise Levels	
			odelling Parameters	
			of the Rail Noise Model	
Tabl	e 11: Sta	ge 2 QD	C Noise Category Treatments - Combined Road Traffic and Rail Noise	26
			oise Categories and Associated Sound Reduction Requirements (QDC MP4.4 - So	
1)				27
Fig	ure Ind	dex		

Figure 2: Site Plan	8
Figure 3: Unattended Noise Monitoring Locations	9
Figure 4: Predicted Road Traffic Noise Levels – Ground Level	. 17
Figure 5: Predicted Road Traffic Noise Levels – First Floor	. 17
Figure 6: Predicted Rail Noise Levels Compared to SDAP Outdoor Criteria - No Acoustic Barriers	. 20
Figure 7: Predicted Rail Noise Levels Compared to SDAP Outdoor Criteria - With Acoustic Barriers	. 21
Figure 8: Predicted L _{Amax} Rail Noise Levels – Ground Floor	. 22
Figure 9: Predicted L _{Amax} Rail Noise Levels – First Floor	. 22
Figure 10: Recommended Acoustic Barrier – Rail Noise (Detailed plan in Appendix A)	. 25

4

1 Executive Summary

TTM was engaged by Economic Development Queensland to undertake a noise assessment of Stage 2 of the proposed Carseldine Urban Village development located at 532 Beams Road, Carseldine. The assessment was based upon relevant planning scheme and transport noise development codes.

Unattended noise monitoring was conducted to determine the current road traffic and rail noise levels at the development location.

A revision to the location of the rail acoustic barrier detailed in the masterplan assessment was included in this analysis (Section 9.1).

Noise modelling of road traffic noise from Beams Road and rail noise was conducted. Some lots are noise affected by road traffic and rail noise and future dwellings will require acoustic treatment (Section 9.2).

Compliance with the relevant planning scheme and State transport noise requirements is predicted based on the implementation of the recommendations outlined in Section 9 of this report.

2 Introduction

2.1 Background

TTM was engaged by Economic Development Queensland to undertake a noise assessment of Stage 2 of the proposed Carseldine Urban Village development located at 532 Beams Road, Carseldine. This report will form part of the development application for consideration by Economic Development Queensland (EDQ) and relevant State authorities.

2.2 References

This report is based on the following:

- Economic Development Queensland (EDQ) Further Issues, dated 30 June 2020
- Fitzgibbon Urban Development Area Development Scheme
- Urban Land Development Authority, Fitzgibbon Interim Land Use Plan, July 2008, Version 1
- State Development Assessment Provisions (SDAP) Version 2.6
- Queensland Development Code (QDC) MP4.4 *Buildings in a Transport Noise Corridor* (August 2015)
- Development plans shown in Appendix A
- Site inspection, noise measurements, analysis and calculations conducted by TTM

2.3 Scope

The assessment includes the following:

- Description of the site.
- Measurement of existing road traffic, rail and ambient noise levels.
- Statement of assessment criteria relating to road traffic and rail noise impacts.
- Prediction of future road traffic and rail noise onto the development.
- Analysis of measured and predicted noise levels.
- Details of noise control recommendations to be incorporated to achieve predicted compliance.

3 Site Description

3.1 Site Location

The site is described by the following:

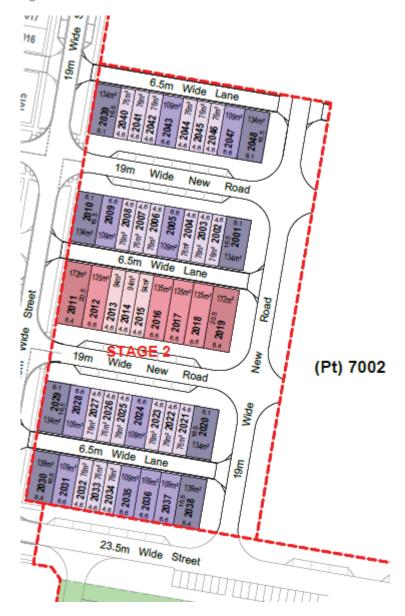
- Lot 322 SP172124
- 532 Beams Road, Carseldine

The site locality is shown in Figure 1.

Figure 1: Site Locality

3.2 Current Site Conditions

The site is bound by Beams Road to the north, Dorville Road to the west, bushland to the south and a rail line to the east. The current acoustic environment at the site is primarily comprised of noise from road traffic on Beams Road and rail noise from the rail line.



4 The Proposed Development

4.1 Development Description

The Stage 2 proposal is to develop the site into residential terrace allotments and associated internal roads. A site plan of the lot subdivision is presented in Figure 2. Further samples of the development plans are shown in Appendix A.

Figure 2: Site Plan

5 Measurements

5.1 Equipment

The following equipment was used to measure existing noise levels:

- ARL EL 315 Environmental noise logger (SN# 15-302-489) Road traffic noise
- Norsonic Nor140 noise logger (SN# 1406504) Rail noise
- Norsonic Nor131 Sound Level Meter (SN# 1313158)
- RION Sound Calibrator type NC73 (SN# TTMNC73-01)

All equipment was calibrated by a National Association of Testing Authorities (NATA) accredited laboratory. The equipment was field calibrated before and after the measurement session. No significant drift from the reference signal was recorded.

5.2 Unattended Noise Monitoring

Unattended noise monitoring was conducted to establish the existing road traffic and rail noise levels between Tuesday 11th July, 2017 to Tuesday 18th July, 2017. The noise monitoring locations are shown in Figure 3. The road traffic noise monitor was placed approximately 17 metres from the edge of Beams Road. The rail noise monitor was located a distance of approximately 17 meters from the centre of the nearest rail line. The monitoring locations were chosen to best represent the relevant noise environment with consideration given to both access and security requirements.

Figure 3: Unattended Noise Monitoring Locations

9

The microphones were in a free-field location and 1.5m above ground level. The road traffic noise monitor was set to measure statistical noise levels in 'A'-weighting, 'Fast' response, over 15 minute intervals. The rail noise monitor was set to a 5 minute interval.

The rail noise logger was also set up to record audio when a trigger noise level of 75dB(A) or greater was measured. Audio was recorded for 10 - 15 seconds following each trigger event. The audio recordings were used to confirm that the L_{Amax} levels were from a train pass-by event.

Attended noise measurements were undertaken at each noise logger location on Tuesday 11th July 2017 and were used to verify the unattended noise logging data.

Road traffic noise levels were measured in accordance with Australian Standard *AS2702:1984 Acoustics* – *Methods for the measurement of road traffic noise* (AS2702). Rail noise measurements were conducted in accordance with Australian Standard *AS2377:2002 Acoustics* – *Methods for the Measurement of Railbound Vehicle Noise*.

Weather during the monitoring period was generally fine with rainfall on 16th July and temperatures ranging between 9-20°C (source: Bureau of Meteorology). Data affected by rainfall was excluded from the results.

5.3 Results of Measurements

5.3.1 Road Traffic Noise Levels

Table 1 presents the measured road traffic noise levels at the unattended noise monitoring location on Beams Road. Graphical presentation of the measured noise levels is presented in Appendix B.

Table 1: Measured Road Traffic Noise Levels

Location	Road Traffic Noise Descriptor	Time Period	Measured Level dB(A)
	L _{A10,18hr}	6am to midnight	64
	Noisiest day-time L _{Aeq,1 hour}	6pm to 7pm	64
Dooms Dood	Noisiest night-time L _{Aeq,1 hour}	11pm to 12am	60
Beams Road	L _{Aeq,24} hour	Midnight to midnight	60
	L ₉₀ , 8 hour	10pm to 6am	41
	L ₉₀ , 18 hour	6am to midnight	52

5.3.2 Rail Noise Measurements

After analysing the noise logging data and audio recordings, 54 valid train pass-by measurements were captured during a 24 hour period. Measurement data was discarded from the analysis where audio recordings identified inclusion of train horns and other extraneous noise sources. Rail timetables provided by Queensland Rail (QR) indicate approximately 250 trains per day passed the site during the measurement period including approximately 15 freight trains. The Queensland Rail *Code of Practice – Railway Noise*

Management defines the single event maximum (SEM) sound pressure level as the arithmetic average of the highest 15 single maximum noise level events over a 24-hour period.

Table 2 presents the highest 15 free-field L_{Amax} and associated L_{Aeq} rail noise levels during the measured 24-hour period. The calculated $L_{Aeq,24hr}$ is based on these measured L_{Aeq} results (logarithmic average) and number of trains over a 24 hour period, and is therefore a conservative approach. This approach is required as the proximity of road traffic, results in a significant portion of measured road traffic noise and it is not practical to identify and remove all non-train event measurement data over the 24 hour period.

Table 2: Measured Rail Noise Levels (Highest 15)

Train Type	Maximum Noise Level L _{MAX} dB(A)	Noise Level L _{eq} dB(A)	Warning Device
Passenger 89.4		67.0	No
Passenger	89.3	71.2	No
Passenger	88.3	66.9	No
Passenger	87.8	64.7	No
Passenger	87.5	66.3	No
Passenger	87.2	68.7	No
Passenger	85.8	64.5	No
Passenger	84.8	65.0	No
Passenger	83.9	63.2	No
Passenger	83.8	62.7	No
Freight	83.3	63.0	No
Passenger	83.3	63.5	No
Passenger	82.7	66.5	No
Passenger	82.2	63.3	No
Passenger	82.0	64.2	No
Single event maximum noise level (SEM) dB(A)	85.4		
Leq,24hour dB(A)		58.6	

6 Noise Criteria

Assessment criteria for road traffic noise and rail noise are outlined in the following sections.

6.1 Road Traffic Noise

The site is located in the local government transport noise corridor of Beams Road. To ensure a satisfactory level of acoustic amenity is provided for the development, an assessment has been conducted to achieve compliance with the requirements of QDC MP4.4.

6.1.1 Queensland Development Code MP4.4 – Road Traffic Noise

The Queensland Development Code Part MP 4.4 - 'Buildings in a Transport Noise Corridor' August 2015 (QDC) specifies Noise Categories to ensure that habitable rooms of residential buildings are adequately protected from transport noise over a 10-year planning horizon.

The Noise Categories list the minimum acoustic R_W ratings for each building component to comply with the indoor sound levels as outlined in Australian Standard AS2107¹. Details regarding the noise categories and acceptable forms of construction can be found within Schedule 1 and 2 of the QDC document. The triggers for each noise category are summarised in Table 3.

Table 3: Road Traffic Noise Category Levels – QDC MP4.4 (Schedule 3)

Noise Category	Level of Transport Noise* L _{A10,18Hour} for State-Controlled Roads and Designated Local Government Roads
Category 4	≥ 73 dB(A)
Category 3	68 – 72 dB(A)
Category 2	63 – 67 dB(A)
Category 1	58 – 62 dB(A)
Category 0	≤ 57 dB(A)

^{*}Measured at 1 metre from the façade of the proposed or existing building.

6.2 Rail Noise

The assessment of rail noise is considered under the following criteria.

6.2.1 Fitzgibbon Interim Land Use Plan

The Fitzgibbon Interim Land Use Plan specifies acoustic amenity criteria for rail noise in Part 6 section 2(a) as follows:

To the extent determined appropriate by the ULDA, a noise-sensitive use i.e. detached and multi-unit dwellings, child care facility and community facility, within 100m of the north south rail line must meet indoor

12

¹ AS NZS 2107:2016. Acoustics - Recommended design sound levels and reverberation times for building interiors

design level noise criteria to achieve average maximum sound level (10 pm - 6 am) not greater than 50dB(A). The noise criteria should be achieved within bedrooms, living areas and noise-sensitive areas of non residential uses.

We would expect the above stated internal sound level criteria of 50dB(A) L_{max} to take precedence over the SDAP internal criteria.

6.2.2 State Development Assessment Provisions (SDAP)

The noise criteria for land affected by emissions from rail activities are contained in State Code 2 of the State Development Assessment Provisions (SDAP). The criteria are reproduced in Table 4.

Table 4: SDAP Noise Criteria - Rail Noise

Performance Outcomes	Acceptable Outcomes
PO24 Development involving: 1. an accommodation activity; or 2. land for a future accommodation activity minimises noise intrusion from a railway or type 2 multi-modal corridor in habitable rooms.	AO24.1 A noise barrier or earth mound is provided which is designed, sited and constructed: 1. to meet the following external noise criteria at all facades of the building envelope: a. ≤65 dB(A) Leq (24 hour) façade corrected b. ≤87 dB(A) (single event maximum sound pressure level) façade corrected 2. in accordance with the Civil Engineering Technical Requirement − CIVIL-SR-014 Design of noise barriers adjacent to railways, Queensland Rail, 2011. Habitable rooms of relevant residential buildings located within a transport noise corridor must comply with the Queensland Development Code MP4.4 Buildings in a transport noise corridor, Queensland Government, 2015. Transport noise corridors are mapped on the State Planning Policy Interactive Mapping System.
PO25 Development involving an accommodation activity minimises noise intrusion from a railway or type 2 multimodal corridor in outdoor spaces for passive recreation	AO25.1 A noise barrier or earth mound is provided which is designed, sited and constructed: 1. to meet the following external noise criteria in outdoor spaces for passive recreation: a. ≤62 dB(A) Leq (24 hour) free field b. ≤84 dB(A) (single event maximum sound pressure level) free field 2. in accordance with the Civil Engineering Technical Requirement − CIVIL-SR-014 Design of noise barriers adjacent to railways, Queensland Rail, 2011. OR AO26.2 Each dwelling has access to an outdoor space for passive recreation which is shielded from a railway or type 2 multi-modal corridor by a building, a solid gap-free fence, or other solid gap-free structure. AND

Performance Outcomes	Acceptable Outcomes
	AO26.3 Each dwelling with a balcony directly exposed to noise from a railway or type 2 multi-modal corridor has a continuous solid gap-free balustrade (other than gaps required for drainage purposes to comply with the Building Code of Australia).

6.2.3 Queensland Development Code MP4.4 - Rail

The Queensland Development Code Part MP 4.4 - 'Buildings in a Transport Noise Corridor August 2015 (QDC) specifies Noise Categories to ensure that habitable rooms of residential buildings are adequately protected from transport noise over a 10-year planning horizon.

The Noise Categories list the minimum acoustic R_W ratings for each building component to comply with the indoor sound criteria. Details regarding the noise categories and acceptable forms of construction can be found within Schedule 1 and 2 of the QDC document. The triggers for each noise category are summarised in Table 5.

Table 5: Rail Noise Category Levels – QDC MP4.4 (Schedule 3)

Noise Category	Single event maximum noise* (L _{Amax}) for Railway Land		
Category 4	≥ 85		
Category 3	80 – 84		
Category 2	75 – 79		
Category 1	70 – 74		
Category 0	≤ 69		

^{*} Measured at 1metre from the façade of the proposed or existing building.

7 Analysis – Road Traffic Noise

An assessment of road traffic noise onto the proposed development was conducted to determine the acoustic treatment requirements for predicted compliance with the relevant criteria.

7.1 Traffic Volumes

Existing traffic volumes and growth rates were obtained from Cardno traffic engineers. The traffic volumes used in the noise model are presented in Table 6.

Table 6: Traffic Volumes used in the Noise Model

Road	Traffic Volumes (AADT)			Heavy	Growth Rate
Road	2016	2017	2031	Vehicles (%)	(%)
Beams Road	13,500	13,770	17,261	5.0%	2.0%

The 18 hour traffic volumes used in the noise model are taken to be 95% of the AADT (Annual average daily traffic).

7.2 Noise Model

7.2.1 Noise Modelling Parameters

Road traffic noise predictions were conducted using 'SoundPLAN v8.1', a CoRTN based modelling program. The basis of the 'SoundPLAN' model is presented in Table 7.

Table 7: Road Traffic Noise Modelling Parameters

Description	Value
Noise modelling standard	CORTN (UK)
Grid spacing (noise maps)	2m
Road surface type	Impervious (+0 dB(A))
Ground contours	Natural ground levels and Design earthworks levels from Calibre Group plan ref. 15-003002.01-SK-1220_1
Beams Road Speed limit	60 km/h
Noise source height above grade	0.5m
Floor heights	2.8m
Receiver heights	1.8m above ground level
Façade correction	+2.5 dB(A)

7.2.2 Noise Model Verification

To verify the road traffic noise model, the $L_{A10, 18hour}$ noise levels were modelled and compared to the measured levels as presented in Table 8. As the noise monitor was in a free-field location, the predicted noise level is also shown as free-field.

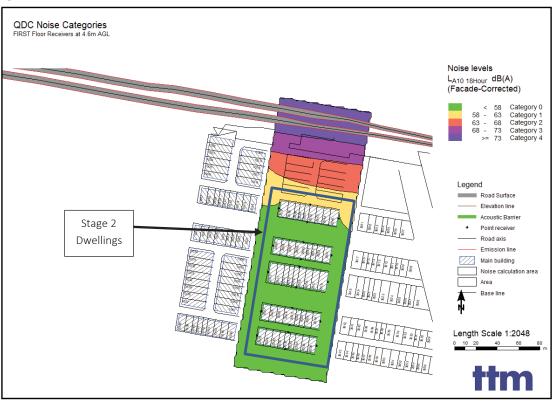
Table 8: Comparison of Measured and Predicted Road Traffic Noise Levels

Location	Measured L _{A10} , 18 hour	Predicted L _{A10, 18 hour}	Required Correction	
Beams Road	64	64	0	

The modelled level is within the allowable tolerance of 2 dB(A) of the measured level, therefore no correction is required to the model.

7.3 Predicted Noise Levels

Modelling was conducted to determine road traffic noise levels at the development in the 10 year planning horizon from a forecast completion date of 2021. The predicted future noise levels take into account the 2031 traffic volumes.


Predicted road traffic noise contour maps illustrated as QDC noise categories at the ground floor and first floor are presented in Figure 4 and Figure 5 respectively.

QDC Noise Categories
GROUND Floor Receivers at 1.8m AGL Noise levels L_{A10 18Hour} dB(A) (Facade-Corrected) < 58 58 - 63 63 - 68 68 - 73 >= 73 Category 0 Category 1 Category 2 Category 3 Category 4 Legend Road Surface Elevation line Acoustic Barrier Stage 2 Point receiver Road axis Dwellings Emission line Main building Noise calculation area Area - Base line Length Scale 1:2032

Figure 4: Predicted Road Traffic Noise Levels – Ground Level

Based on the noise modelling results, the development is predicted to be impacted by road traffic noise at QDC noise category 0 - 1 for ground and first floor levels. SoundPLAN receiver point results are shown in Appendix C.

8 Rail Noise Assessment

An assessment of rail noise onto the proposed development was conducted to determine the acoustic treatment requirements for predicted compliance with the relevant criteria.

8.1 Rail Volumes

Rail timetables provided by Queensland Rail (QR) indicate approximately 250 trains per day pass the site (including approximately 15 freight trains). We were advised that all services are subject to alteration, addition and cancellation which may vary the number of actual trains passing daily.

8.2 Noise Model

8.2.1 Noise Modelling Parameters

Rail noise predictions were conducted using 'SoundPLAN' v8.1. The basis of the 'SoundPLAN' model is as follows:

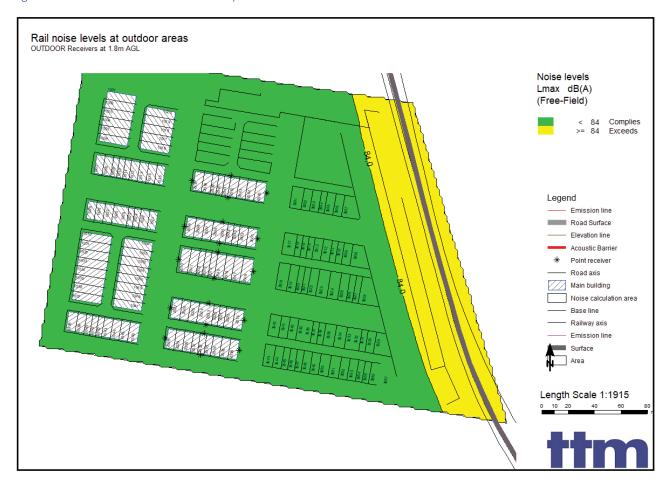
Table 9: Rail Noise Modelling Parameters

Description	Value
Prediction methodology	Nordic Rail Prediction (Kilde Rep. 130)
Grid spacing (noise maps)	2m
Train Frequency (daily) passenger / freight	235 / 15 (approximate)
Train speed	Passenger: 60km/h (estimated) Freight: 80km/h (standard reference speed)
Train length	Passenger: 144m Freight: 1000m Diesel engine: 36m (dual locomotive)
Rail track head height	0.6m above ground
Rail noise source height	0.5m (wheels) and 4.0m (diesel engine) above track head height (includes Kilde +0.5m addition)
L1 train type corrections	Passenger electric: -4.6dB Diesel engine: +4.4dB Freight wagons: -6.5dB
L2 correction (dLtype engine)	-100dB (removes contribution)
Rail noise measurement distance	17m from the nearest line
Ground contours	Natural ground levels and Design earthworks levels from Calibre Group plan ref. 15-003002.01-SK-1220_1
Floor heights	2.8m
Receiver heights	1.8m above ground level
Façade correction	+2.5 dB(A)

8.2.2 Noise Model Verification

The measured single event maximum sound pressure level LAmax noise level at the monitoring location was verified in the noise model prior to modelling noise impacts at the development. Table 10 presents the results of the rail noise model verification.

Table 10: Verification of the Rail Noise Model


Descriptor	Measured dB(A)	Predicted dB(A)	Required Correction
L _{Amax}	85.4	89.2	-1.8
L _{Aeq,24hr}	58.6	60.5	0

A correction was applied to the L_{Amax} rail noise source to bring the model within +2dB of the measured level. The over prediction is considered to possibly be caused by freight locomotives with a lower engine noise emission on site (ie. notch setting).

8.3 Predicted Noise Levels - L_{Amax}

Predicted rail noise levels are presented in Figure 6 and compared to the SDAP outdoor passive recreation criteria

Figure 6: Predicted Rail Noise Levels Compared to SDAP Outdoor Criteria - No Acoustic Barriers

All lots (Stage 2 and future stages) are predicted to comply with the L_{Amax} and L_{Aeq} (24 hour) SDAP external façade (AO25.1) and outdoor passive recreation (AO26.1) criteria. Receiver point modelling results are presented in Appendix C.

An acoustic barrier for rail noise was recommended as part of the previous masterplan noise assessment to reduce rail noise levels to dwellings. A revision to this barrier is included in this assessment. The barrier is located along the length of the eastern boundary of the site (shown in the below figures) with a height of 3.6m above natural ground level. A stepped-in portion of the barrier at the northern end of the eastern boundary is 1.8m high above site design levels. The barrier returns along Beams Road frontage at 1.8m high. Details of the barrier are provided in Appendix A.

Predicted rail noise levels with acoustic barriers are presented in Figure 7 and compared to the SDAP outdoor passive recreation criteria.

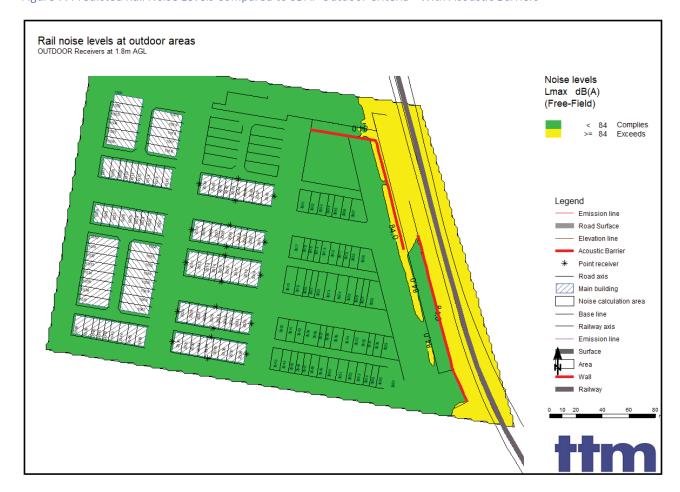


Figure 7: Predicted Rail Noise Levels Compared to SDAP Outdoor Criteria - With Acoustic Barriers

All lots are predicted to comply with the SDAP criteria. The barrier overlap is acceptable as indicated by the noise modelling.

Predicted rail noise contour maps illustrated as QDC noise categories for ground floor and first floor are presented in the following figures.

Figure 8: Predicted L_{Amax} Rail Noise Levels – Ground Floor

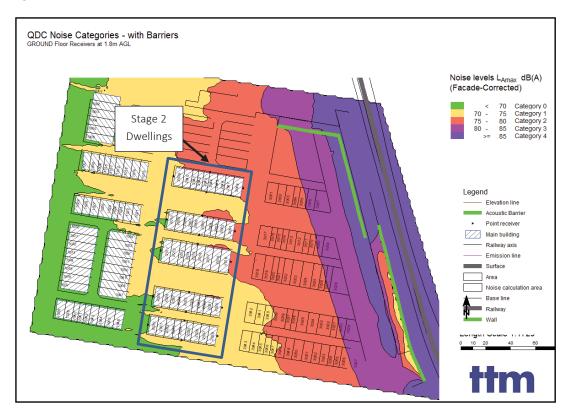
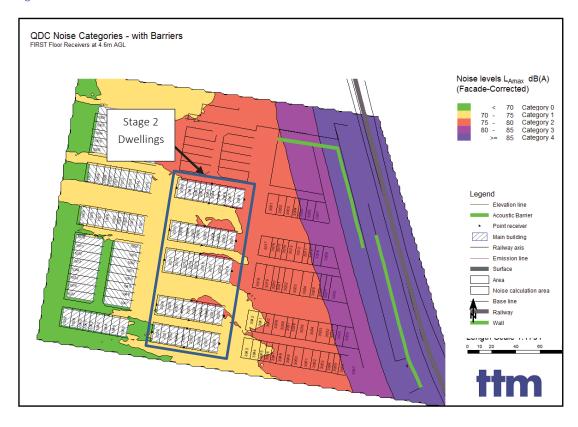



Figure 9: Predicted L_{Amax} Rail Noise Levels – First Floor

Based on the noise modelling, the development is predicted to be impacted by rail noise at a level of QDC noise category 0-2 for some ground and first floor levels. Receiver point modelling results are presented in Appendix C.

Facade acoustic treatments are recommended in order to comply with QDC MP4.4 internal criteria for habitable rooms. QDC noise categories and associated acoustic treatment requirements for noise affected façades and floor levels are detailed in Section 9.

9 Recommendations

The recommended acoustic treatments are presented in the sections below to achieve predicted compliance with the relevant assessment criteria.

9.1 Acoustic Barrier

To reduce built form acoustic treatment requirements, an acoustic barrier is recommended at the location, height and extent as shown in Figure 10. A revision to the location of the rail acoustic barrier detailed in the masterplan assessment was included in this analysis. A detailed plan of the acoustic barrier is included in Appendix A.

The acoustic barrier should be:

- The minimum height as shown, relative to the site boundary level and finished site levels (as applicable). Further barrier height information is included in Appendix A.
- Constructed in accordance with Queensland Rail Civil Engineering Technical Requirement CIVIL-SR 014 Design of noise barriers adjacent to railways.
- No gaps or holes in the barrier construction including at the base.
- The barrier should be constructed of a material with a surface mass not less than 15kg/m².
- Suitable materials may include earth mound, steel panels, fibre cement sheeting, plywood, glass, masonry, or a combination of materials.
- Note only: The future development approval conditions for the project may require the noise barrier
 design to be submitted to the Department of Transport and Main Roads for review and endorsement,
 prior to the commencement of construction. Timber may not be an accepted material by Department of
 Transport and Main Roads.

ACOUNTY PENCE ONLY

ACOUNT

Figure 10: Recommended Acoustic Barrier – Rail Noise (Detailed plan in Appendix A)

9.2.1 Road Traffic and Rail Noise

This section summarises the combined building form treatment required for habitable rooms for road traffic and rail noise to achieve compliance with the Queensland Development Code (QDC) MP4.4. For the purposes of the development application, the QDC provides a conservative design approach and is applied for this assessment.

The QDC MP4.4 requires that habitable rooms in residential buildings located in a transport noise corridor are adequately protected from transport noise to safeguard occupant's health and amenity.

In order to achieve the performance requirements of the QDC MP4.4, the external envelope of habitable rooms must comply with the minimum R_W for each building component specified in Schedule 1 to achieve a minimum transport noise reduction level for the relevant noise category by either one of the following:

a. Using materials specified in Schedule 2 of the QDC MP4.4;

OR

b. Using materials with manufacturer's specifications that achieve the minimum R_W value for the relevant building component and applicable noise category.

For application of Point (b), possible alternative constructions can be determined by the glazier (for glazing) and construction manuals such as 'The Red Book' by CSR (for walls and roof/ceiling).

Table 11 presents the acoustic treatment requirements for habitable rooms in accordance with the QDC MP4.4 policy. The treatments are based on the predicted impacts from road traffic and rail noise.

Table 11: Stage 2 QDC Noise Category Treatments - Combined Road Traffic and Rail Noise

Townhouses	Floor Level	Road Traffic and Rail Noise QDC Noise Categories for Habitable Rooms By Façade and Floor			
		E	N	S	w
Terrace 2001 - 2010	Ground	2 (2001 only)	1 2 (2001-2005 only)	1	0
	First Floor	2 (2001 only)	1 2 (2001-2006 only)	1	1 (2010 only)
Terrace 2011 - 2019	Ground	2 (2019 only)	1 2 (2017-2019 only)	1	0
	First Floor	2 (2019 only)	1 2 (2016-2019 only)	1	1 (2011 only)
	Ground	1 (2020 only)	1	1	0
Terrace 2020 - 2029	First Floor	2 (2020 only)	1 2 (2020-2024 only)	1	1 (2029 only)
Terrace 2030 - 2038	Ground	1	1	1	0
	First Floor	1 (2038 only)	1	1	0
Terrace 2039 - 2048	Ground	2 (2048 only)	2	1	1 (2039 only)
	First Floor	2 (2048 only)	2	1	1 (2039 only)

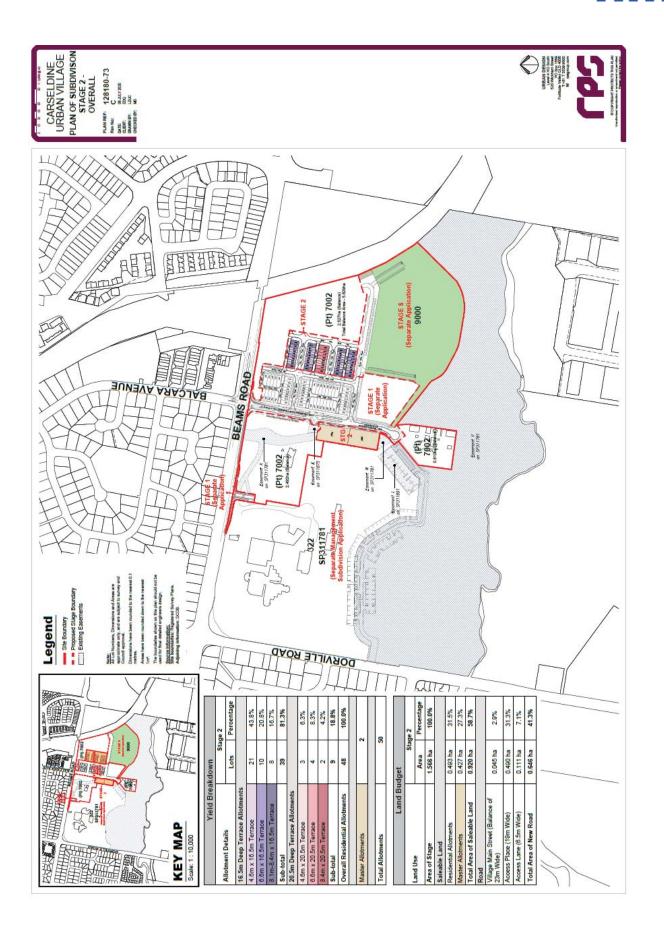
Details regarding noise categories and associated sound reduction (R_w) requirements for habitable rooms can be found within Schedule 1 of the QDC MP4.4. QDC Schedule 1 is reproduced in Table 12.

Table 12: QDC Rail Noise Categories and Associated Sound Reduction Requirements (QDC MP4.4 - Schedule 1)

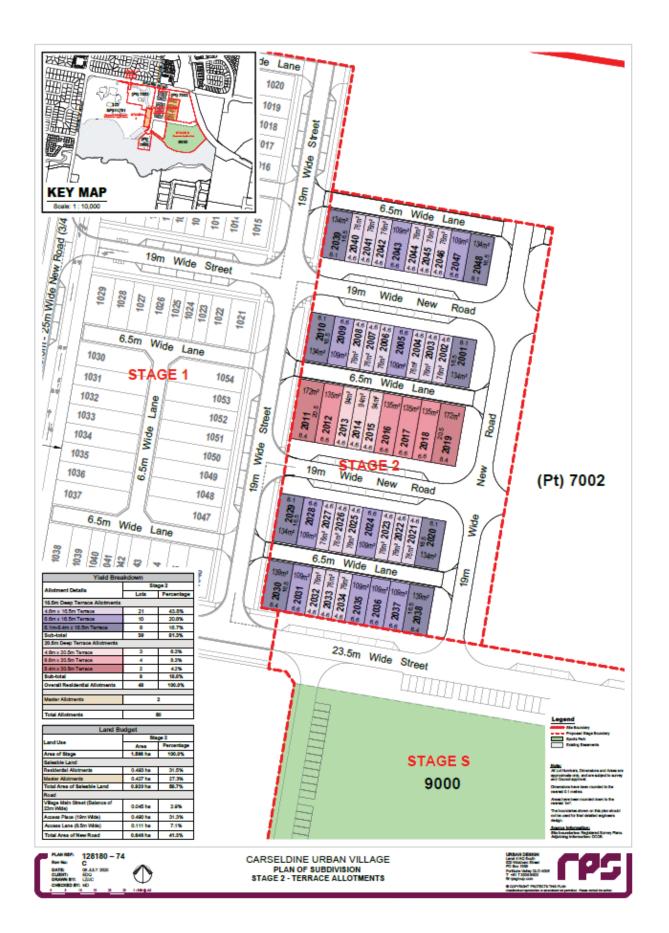
QDC Noise	Required Sound Reduction Rating (R _w) for Habitable Rooms			
Category	Glazing > 1.8m ²	Glazing ≤ 1.8m²	External Walls	Roof and Ceiling
Category 4	Rw 43	Rw 43	Rw 52	Rw 45
Category 3	Rw 38	Rw 35	Rw 47	Rw 41
Category 2	Rw 35	Rw 32	Rw 41	Rw 38
Category 1	Rw 27	Rw 24	Rw 35	Rw 35
Category 0	None	None	None	None

Details regarding sound reduction ratings (Rw) and acceptable forms of construction can be found within QDC MP 4.4 Schedule 2. QDC Schedule 1 and 2 are provided in Appendix D of this report.

10 Conclusion


TTM was engaged by Economic Development Queensland to undertake a noise assessment of Stage 2 of the proposed Carseldine Urban Village development located at 532 Beams Road, Carseldine. The assessment was based upon relevant planning scheme and transport noise development codes.

Compliance with the relevant planning scheme and State transport noise requirements is predicted based on the implementation of the recommendations outlined in Section 9 of this report.



Appendix A Development Plans

ttm

ttm

Draft layout plan of other Stages – used for dwelling layout in noise model

Revised Rail Noise Acoustic Barrier (used in the noise model)

Appendix B Unattended Noise Monitoring Graphs

Road Traffic Noise Monitor

17BRA0109

1,0,0,0103

Appendix C SoundPLAN Noise Modelling

532 Beams Rd, Carseldine Urban Village Assessed receiver levels RTN - Verification 2017

Receiver		FI	L10(18h) Free Field dB(A)	
Logger Rece	eiver - Road	GF	64.0	
	TTM Consulting ((Qld) Pty Ltd Level	1 - 129 Logan Rd Woolloongabba, QLD 4102	1

SoundPLAN 7.4

490 Beams Rd, Fitzgibbon Rail - Verification

Lot Number	LAMax Free Field	Leq24hr Free Field	
	dB(A)	dB(A)	
Logger Receiver - Rail (85.4dB)	87.4	60.5	

TTM Consulting Pty Ltd Page 1

SoundPLAN 8.1

532 Beams Rd, Carseldine Urban Village Road Traffic Noise Assessment RTN - Prediction 2031 - Stage 2

Receiver	Direction	Floor	L10(18h) Facade Corrected
			dB(A)
Terrace 2001 - 2010	E	GF	52.1
		F1	54.4
Terrace 2001 - 2010	N	GF	48.8
	_	F 1	51.7
Terrace 2001 - 2010	S	GF	41.5
Terrace 2001 - 2010	w	F1 GF	47.1 49.7
Terrace 2001 - 2010	VV	F1	49.7 52.4
Terrace 2011 - 2019	E	GF	50.2
Terrace 2011 - 2013	_	F 1	52.7
Terrace 2011 - 2019	N	GF	45.6
1011400 2011 - 2010	"	F1	49.8
Terrace 2011 - 2019	s	GF	40.4
		F 1	45.9
Terrace 2011 - 2019	W	GF	47.4
		F1	50.4
Terrace 2020 - 2029	E	GF	47.8
		F 1	50.5
Terrace 2020 - 2029	N	GF	46.4
T 2020 2020		F 1	49.1
Terrace 2020 - 2029	S	GF F1	39.3 44.7
Terrace 2020 - 2029	w	GF	44.7 45.8
Tellace 2020 - 2029	VV	F 1	48.9
Terrace 2030 - 2038	Е	GF	46.9
1011000 2030 - 2030	_	F 1	49.6
Terrace 2030 - 2038	N	GF	43.8
		F 1	48.2
Terrace 2030 - 2038	S	GF	38.6
		F1	44.1
Terrace 2030 - 2038	W	GF	45.3
	_	F1	48.4
Terrace 2039 - 2048	E	GF	55.5
Terrace 2039 - 2048	N.	F 1	57.7 58.2
Terrace 2039 - 2046	N	GF F1	58.2 60.5
Terrace 2039 - 2048	s	GF	43.1
Terrace 2035 - 2040	3	F 1	48.9
Terrace 2039 - 2048	w	GF	52.6
		F 1	55.4

TTM Consulting Pty Ltd	1

SoundPLAN 8.1

532 Beams Rd, Carseldine Urban Village Assessed receiver levels Rail - Prediction with barrier - Stage 2 with alt barrier

Receiver	Dir	FI	Building Pad Level m (AHD)	Facade corrected	Leq,24hr Facade corrected
				dB(A)	dB(A)
Terrace 2001 - 2010	E	GF		74.0	47.6
		F 1		74.5	49.4
Terrace 2001 - 2010	N	GF		72.6	44.2
	_	F 1	15.20	73.1	46.3
Terrace 2001 - 2010	S	GF		70.8	43.2
Terrace 2001 - 2010	w	F1 GF		71.7 67.6	46.5 40.1
Terrace 2001 - 2010	VV	F1		68.9	42.7
Terrace 2011 - 2019	E	GF		73.3	47.5
Tellace 2011 - 2015	_	F1		73.8	49.0
Terrace 2011 - 2019	N	GF		71.9	45.2
Tellace 2011 - 2013	IN.	F 1	15.20	72.6	47.6
Terrace 2011 - 2019	S	GF	15.20	71.6	46.4
1011a00 2011 - 2013		F 1		72.2	47.9
Terrace 2011 - 2019	w	GF		67.7	42.5
1011000 2011 - 2010		F 1		69.4	44.9
Terrace 2020 - 2029	Е	GF		72.3	47.6
	_	F 1		72.8	48.8
Terrace 2020 - 2029	N	GF		72.1	43.4
		F 1	15.20	72.8	46.0
Terrace 2020 - 2029	S	GF		69.5	45.3
		F 1		70.3	47.3
Terrace 2020 - 2029	W	GF		67.2	43.7
		F 1		68.7	46.0
Terrace 2030 - 2038	E	GF		71.8	47.7
		F 1		72.3	48.8
Terrace 2030 - 2038	N	GF		70.4	44.5
	_	F 1	15.37	71.0	47.3
Terrace 2030 - 2038	S	GF		68.9	45.2
T		F 1		69.5	46.5
Terrace 2030 - 2038	W	GF		65.7	43.2
T 2020 2040	-	F 1		67.7	45.2
Terrace 2039 - 2048	E	GF		75.0	48.4
Terrace 2039 - 2048	N	F1 GF		75.5 74.4	50.4 45.5
Terrace 2035 - 2040	IN	F1	14.86	74.9	48.0
Terrace 2039 - 2048	s	GF	14.80	74.9	45.7
Torrace 2000 - 2040	٥	F1		72.2	47.4
Terrace 2039 - 2048	w	GF		68.5	38.8
10/10/00 2000 - 2040	• • •	F 1		69.4	41.0

	TTM Consulting (QId) Pty Ltd Level 8, 369 Ann Street, Brisbane QLD 4000	1

SoundPLAN 8.1

Appendix D QDC MP4.4 Schedules 1 and 2

Schedule 1

Noise category	Minimum transport noise reduction (dB (A)) required for habitable rooms	Component of building's external envelope	Minimum R _w required for each component
		Glazing	43
		External walls	52
Category 4	40	Roof	45
		Floors	51
		Entry doors	35
		Glazing	38 (where total area of glazing for a <i>habitable room</i> is greater than 1.8m ²)
		Giazing	35 (where total area of glazing for a <i>habitable room</i> is les than or equal to 1.8m²)
Category 3	35	External walls	47
		Roof	41
		Floors	45
		Entry doors	33

Version 1.1 Page 7 Publication Date: 17 August 2015

Noise category	Minimum transport noise reduction (dB (A)) required for habitable rooms	Component of building's external envelope	Minimum R⊮required for each component
		- 407 107	35 (where total area of glazing for a <i>habitable room</i> is greater than 1.8m²)
		Glazing	32 (where total area of glazing for a <i>habitable room</i> is less that or equal to 1.8m²)
Category 2	30	External walls	41
		Roof	38
		Floors	45
		Entry doors	33
		Glazing than 1.8m²) 24	(where total area of glazing for a habitable room is greater
			24 (where total area of glazing for a habitable room is less than
Category 1	25		35
		Roof	35
		Entry Doors	28
Category 0	No additional aco	ustic treatment required – stand	lard building assessment provisions apply.

Version 1.1 Page 8 Publication Date: 17 August 2015

Schedule 2

Component of building's external envelope	Minimum R _w	Acceptable forms of construction
	43	Double glazing consisting of two panes of minimum 5mm thick glass with at least 100mm air gap and full perimeter acoustically rated seals.
	38	Minimum 14.38mm thick laminated glass, with full perimeter acoustically rated seals; OR Double glazing consisting of one pane of minimum 5mm thick glass and one pane of minimum 6mm thick glass with at least 44mm air gap, and full perimeter acoustically rated seals
Glazing	35	Minimum 10.38mm thick laminated glass, with full perimeter acoustically rated seals.
	32	Minimum 6.38mm thick laminated glass with full perimeter acoustically rated seals.
	27	Minimum 4mm thick glass with full perimeter acoustically rated seals
	24	Minimum 4mm thick glass with standard weather seals

Version 1.1 Page 9 Publication Date: 17 August 2015

Component of building's external envelope	Minimum R _w	Acceptable forms of construction
	52	Two leaves of clay brick masonry, at least 270mm in total, with subfloor vents fitted with noise attenuators.
External walls	47	Two leaves of clay brick masonry at least 110mm thick with: (i) cavity not less than 50mm between leaves; and (ii) 50mm thick mineral insulation or 50mm thick glass wool insulation with a density of 11kg/m³ or 50mm thick polyester insulation with a density of 20kg/m³ in the cavity. OR Two leaves of clay brick masonry at last 110mm thick with: (i) cavity not less than 50mm between leaves; and (ii) at least 13mm thick cement render on each face OR Single leaf of clay brick masonry at least 110mm thick with: (i) a row of at least 70mm x 35mm timber studs or 64mm steel studs at 600mm centres, spaced at least 20mm from the masonry wall; and (ii) Mineral insulation or glass wool insulation at least 50mm thick with a density of at least 11 kg/m³ positioned between studs; and (iii) One layer of plasterboard at least 13mm thick fixed to outside face of studs. OR Single leaf of minimum 150mm thick masonry of hollow, dense concrete blocks, with mortar joints laid to

Version 1.1 Page 10 Publication Date: 17 August 2015

Component of building's external envelope	Minimum R _w	Acceptable forms of construction
	41	OR Single leaf of clay brick masonry at least 110mm thick with: (i) a row of at least 70mm x 35mm timber studs or 64mm steel studs at 600mm centres, spaced at least 20mm from the masonry wall; and (ii) mineral insulation or glass wool insulation at least 50mm thick with a density of at least 11 kg/m³ positioned between studs; and One layer of plasterboard at least 10mm thick fixed to outside face of studs OR Single leaf of brick masonry at least 110mm thick with at least 13mm thick render on each face OR Concrete brickwork at least 110mm thick OR In-situ concrete at least 100mm thick and without joints.

Version 1.1 Page 11 Publication Date: 17 August 2015

Component of building's external envelope	Minimum R _w	Acceptable forms of construction
	35	Single leaf of clay brick masonry at least 110mm thick with: (i) a row of at least 70mm x 35mm timber studs or 64mm steel studs at 600mm centres, spaced at least 20mm from the masonry wall; and (ii) One layer of plasterboard at least 10mm thick fixed to outside face of studs OR Minimum 6mm thick fibre cement sheeting or weatherboards or plank cladding externally, minimum 90mm
		deep timber stud or 92mm metal stud, standard plasterboard at least 13mm thick internally.
	45	Concrete or terracotta tile or sheet metal roof with sarking, acoustically rated plasterboard ceiling at least 13mm thick fixed to ceiling joists, cellulose fibre insulation at least 100mm thick with a density of at least 45kg/m³ in the cavity. OR Concrete or terracotta tile or sheet metal roof with sarking, 2 layers of acoustically rated plasterboard at least 16mm thick fixed to ceiling joists, glass wool insulation at least 50mm thick with a density of at least 11kg/m³ or polyester insulation at least 50mm thick with a density of at least 20kg/m³ in the cavity.
Roof	41	Concrete or terracotta tile or metal sheet roof with sarking, plasterboard ceiling at least 10mm thick fixed to ceiling joists, glass wool insulation at least 50mm thick with a density of at least 11kg/m³ or polyester insulation at least 50mm thick with a density of at least 20kg/m³ in the cavity. OR Concrete suspended slab at least 100mm thick.
3	38	Concrete or terracotta tile or metal sheet roof with sarking, plasterboard ceiling at least 10mm thick fixed to ceiling cavity, mineral insulation or glass wool insulation at least 50mm thick with a density of at least 11 kg/m³.

Version 1.1 Page 12 Publication Date: 17 August 2015

Component of building's external envelope	Minimum R _w	Acceptable forms of construction
	35	Concrete or terracotta tile or metal sheet roof with sarking, plasterboard ceiling at least 10mm thick fixed to ceiling cavity.
Floors	51	Concrete slab at least 150mm thick.
	45	Concrete slab at least 100mm thick OR Tongued and grooved boards at least 19mm thick with: (i) timber joists not less than 175mm x 50mm; and (ii) mineral insulation or glass wool insulation at least 75mm thick with a density of at least 11kg/m³ positioned between joists and laid on plasterboard at least 10mm thick fixed to underside of joists; and (iii) mineral insulation or glass wool insulation at least 25mm thick with a density of at least 11kg/m³ laid over entire floor, including tops of joists before flooring is laid; and (iv) secured to battens at least 75mm x 50mm; and (v) the assembled flooring laid over the joists, but not fixed to them, with battens lying between the joists.
Entry Doors	35	Solid core timber not less than 45mm thick, fixed so as to overlap the frame or rebate of the frame by not less than 10mm, with full perimeter acoustically rated seals.
	33	Fixed so as to overlap the frame or rebate of the frame by not less than 10mm, fitted with full perimeter acoustically rated seals and constructed of - (i) solid core, wood, particleboard or blockboard not less than 45mm thick; and/or (ii) acoustically laminated glass not less than 10.38mm thick.

Version 1.1 Page 13 Publication Date: 17 August 2015

Component of building's external envelope	Minimum R _w	Acceptable forms of construction
		Fixed so as to overlap the frame or rebate of the frame, constructed of - (i) Wood, particleboard or blockboard not less than 33mm thick; or
	28	(ii) Compressed fibre reinforced sheeting not less than 9mm thick; or(iii) Other suitable material with a mass per unit area not less than 24.4kg/m²; or
		(iv) Solid core timber door not less than 35mm thick fitted with full perimeter acoustically rated seals.

Version 1.1 Page 14 Publication Date: 17 August 2015